14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2$\sqrt{3}$,PD=CD=2,則二面角A-PB-C的正切值為$\frac{\sqrt{15}}{9}$.

分析 以D為原點(diǎn),DA為x軸,DC為y軸,過D作平面ABCD的垂直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PB-C的正切值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,過D作平面ABCD的垂直線為z軸,建立空間直角坐標(biāo)系,
在△PDC中,由于PD=CD=2,PC=2$\sqrt{3}$,可得∠PCD=30°,
∴P到平面ABCD的距離為PCsin30°=$\sqrt{3}$.
∴A(1,0,0),P(0,-1,$\sqrt{3}$),B(1,2,0),C(0,2,0),
$\overrightarrow{PA}$=(1,1,-$\sqrt{3}$),$\overrightarrow{PB}$=(1,3,-$\sqrt{3}$),$\overrightarrow{PC}$=(0,3,-$\sqrt{3}$),
設(shè)平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=x+y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=x+3y-\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3},0,1$),
設(shè)平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PA}=a+b-\sqrt{3}c=0}\\{\overrightarrow{m}•\overrightarrow{PC}=3b-\sqrt{3}c=0}\end{array}\right.$,取c=$\sqrt{3}$,得$\overrightarrow{m}$=(2,1,$\sqrt{3}$),
設(shè)二面角A-PB-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{3}}{2\sqrt{8}}$=$\frac{3\sqrt{6}}{8}$,sinθ=$\sqrt{1-(\frac{3\sqrt{6}}{8})^{2}}$=$\frac{\sqrt{10}}{8}$,
tanθ=$\frac{sinθ}{cosθ}$=$\frac{\sqrt{15}}{9}$.
∴二面角A-PB-C的正切值為$\frac{\sqrt{15}}{9}$.
故答案為:$\frac{\sqrt{15}}{9}$.

點(diǎn)評 本題考查二面角的正切值的求法,向量的數(shù)量積的應(yīng)用,考查空間想象能力以及計(jì)算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)$f(x)=\fracvyfmw8y{{a{x^2}-bx+c}}(a,b,c,d∈R)$的圖象如圖所示,則a:b:c:d=( 。
A.1:6:5:(-8)B.1:6:5:8C.1:(-6):5:8D.1:(-6):5:(-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對于函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x+sin2x(x∈R)有以下幾種說法:
(1)($\frac{π}{12}$,0)是函數(shù)f(x)的圖象的一個對稱中心;
(2)函數(shù)f(x)的最小正周期是2π;
(3)函數(shù)f(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增.
(4)y=f(x)的一條對稱軸$x=\frac{π}{3}$:其中說法正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則所得的兩個點(diǎn)數(shù)和不小于10的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在空間直角坐標(biāo)系中,已知$\overrightarrow{a}$=(2,2,-1),$\overrightarrow$=(-1,3,1),則$\overrightarrow{a}$、$\overrightarrow$夾角的余弦值是$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-sin2x+sinx+a,
(1)當(dāng)f(x)=0有實(shí)數(shù)解時,求a的取值范圍;
(2)若$x∈[\frac{π}{6},\frac{2π}{3}]$,恒有1≤f(x)≤$\frac{17}{4}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知a,b,c三邊上的高h(yuǎn)a=3,hb=4,hc=5,則sinA:sinB:sinC=20:15:12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若當(dāng)x∈R時,函數(shù)f(x)=a|x|(a>0且a≠0)始終滿足f(x)≥1,則函數(shù)$y=\frac{{{{log}_a}|x|}}{x^3}$的大致圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a、b、c∈R,則下列四個命題中,正確的是( 。
A.若a>b,則ac2>bc2B.若a>b,c>d,則a-c>b-d
C.若a>b,則$\frac{1}{a}<\frac{1}$D.若a>|b|,則a2>b2

查看答案和解析>>

同步練習(xí)冊答案