5.一個(gè)幾何體的三視圖如圖所示,求此幾何體的體積.

分析 由三視圖可知該幾何體為上部是一四棱錐,高為3,下部為正方體,邊長(zhǎng)為4的組合體.分別求得體積再相加.

解答 解:由三視圖可知該幾何體為上部是一四棱錐,下部為正方體的組合體.四棱錐的高h(yuǎn)1=3,正方體棱長(zhǎng)為4
V正方體=Sh2=42×4=64
V四棱錐=$\frac{1}{3}$Sh1=$\frac{1}{3}$×42×3=16
所以V=64+16=80

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,考查計(jì)算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).則曲線C的直角坐標(biāo)方程為(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(1)對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=-f(x)則稱f(x)為局部函數(shù),已知二次函數(shù)f(x)=ax2+2x-4a(a∈R,a≠0)是定義域在R上的局部函數(shù),則滿足f(-x)=-f(x)的x值是±2
(2)若直角坐標(biāo)平面內(nèi)兩點(diǎn)A、B滿足條件:點(diǎn)A、B都在f(x)的圖象上;點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則對(duì)稱點(diǎn)(A、B)對(duì)是函數(shù)的一個(gè)姊妹點(diǎn)對(duì)點(diǎn)對(duì)(A、B)與(B、A)可看做一個(gè)姊妹點(diǎn)對(duì).已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$則f(x)的姊妹點(diǎn)對(duì)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.閱讀下列有關(guān)光線的入射與反射的兩個(gè)事實(shí)現(xiàn)象,現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角i與反射角r相等(如圖1);現(xiàn)象(2):光線從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過(guò)另一個(gè)焦點(diǎn)(如圖2).試結(jié)合上述事實(shí)現(xiàn)象完成下列問(wèn)題:
(1)有一橢圓型臺(tái)球桌,長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b.將一放置于焦點(diǎn)處的桌球擊出,經(jīng)過(guò)球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2))后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過(guò)的路程記為S,求S的值(用a,b表示);
(2)結(jié)論:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一點(diǎn)P(x0,y0)處的切線l的方程為$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.記橢圓C的方程為C:$\frac{x^2}{4}$+y2=1.
①過(guò)橢圓C的右準(zhǔn)線上任一點(diǎn)M向橢圓C引切線,切點(diǎn)分別為A,B,求證:直線lAB恒過(guò)一定點(diǎn);
②設(shè)點(diǎn)P(x0,y0)為橢圓C上位于第一象限內(nèi)的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓C的左右焦點(diǎn),點(diǎn)I為△PF1F2的內(nèi)心,直線PI與x軸相交于點(diǎn)N,求點(diǎn)N橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,已知以x軸為始邊的角α、β的終邊分別經(jīng)過(guò)點(diǎn)(-4,3)、(3,4),則cosα+sinβ=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)原點(diǎn)的直線l與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩支分別相交于A,B兩點(diǎn),F(xiàn)(-$\sqrt{3}$,0)是此雙曲線的左焦點(diǎn),若|FA|+|FB|=4,$\overrightarrow{FA}$•$\overrightarrow{FB}$=0則此雙曲線的方程是( 。
A.$\frac{x^2}{2}$-y2=1B.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{8}$-$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若不等式|a+2b|+|2b-a|≥|a|(|x-1|+|x-2|),對(duì)a、b∈R恒成立且a≠0,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$\frac{(1-i)^{2}}{z}$=1+i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$+cos2α之值.

查看答案和解析>>

同步練習(xí)冊(cè)答案