分析 將極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$),先利用三角函數(shù)的和角公式展開,再化為一般方程即可.
解答 解:∵圓的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$),即ρ=$\sqrt{2}$cosθ-$\sqrt{2}$sinθ,
∴x=ρcosθ,y=ρsinθ,消去p和θ得,
∴(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1,
故答案為:(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.
點(diǎn)評 本題主要考查圓的極坐標(biāo)方程、參數(shù)方程與普通方程的互化,要求學(xué)生能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.屬于中等題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3) | B. | ($\frac{2}{3}$,+∞) | C. | (2,+∞) | D. | [$\frac{2}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+1=2 | B. | 1+1+1=3 | C. | 2×3=6 | D. | 3×3=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com