精英家教網 > 高中數學 > 題目詳情
已知直線l:kx-y-k+3=0,且無論k取何值,直線l與圓(x-5)2+(y-6)2=r2(r>0)恒有公共點,則r的取值范圍是( 。
A.[3,5]B.(3,+∞)C.[4,6)D.[5,+∞)
由于直線l:kx-y-k+3=0,即 k(x-1)+(-y+3)=0,過定點A(1,3),
故當點A在圓內或點A在圓上時,直線l與圓(x-5)2+(y-6)2=r2(r>0)恒有公共點,
故有 (1-5)2+(3-6)2 ≤r2 (r>0),求得 r≥5,
故選D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l:kx+y-k+2=0和兩點A(3,0),B(0,1),下列命題正確的是
 
(填上所有正確命題的序號).
①直線l對任意實數k恒過點P(1,-2);
②方程kx+y-k+2=0可以表示所有過點P(1,-2)的直線;
③當k=±1及k=2時直線l在坐標軸上的截距相等;
④若
x03
+y0=1
,則直線(x0-1)(y+2)=(y0+2)(x-1)與直線AB及直線l都有公共點;
⑤使得直線l與線段AB有公共點的k的范圍是[-3,1];
⑥使得直線l與線段AB有公共點的k的范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:kx-y+1+2k=0(k∈R).
(1)若直線l不經過第四象限,求k的取值范圍;
(2)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:kx-y-4k+1=0被圓C:x2+(y+1)2=25所截得的弦長為整數,則滿足條件的直線l有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:kx-y+2k+1=0(k∈R).
(Ⅰ)證明:直線l過定點;
(Ⅱ)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為
92
,求直線l的方程.

查看答案和解析>>

同步練習冊答案