已知樣本數(shù)據(jù)3,4,5,x,y的平均數(shù)是5,標(biāo)準差是
2
,則xy=(  )
A、42B、40C、36D、30
考點:極差、方差與標(biāo)準差
專題:概率與統(tǒng)計
分析:關(guān)鍵尋找關(guān)于x,y的方程組,題目中說的平均數(shù)和標(biāo)準差就是要找的方程,解方程組,即可求出x,y的值,從而解出所求.
解答: 解:依據(jù)平均數(shù)為5可知,x+y=13…①,
又標(biāo)準差s=
2
=
1
5
5
1
(
.
x
-5)2
…②,
聯(lián)立①②兩式,可以解得
x=6
y=7
x=7
y=6
;
所以xy=42.
故選:A.
點評:本題考查的是平均數(shù)和標(biāo)準差的概念,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在非零實數(shù)集上的奇函數(shù)f(x)在(-∞,0)上時減函數(shù),且f(-3)=0.
(1)求f(3)的值;
(2)求滿足f(x)>0的x的集合;
(3)若g(x)=
2
acos(x+
π
4
)+1-a(a∈R),x∈[
2
,2π],是否存在正實數(shù)a,使得f(g(x))>0恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式log 
1
2
(x2-5x+7)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+1
bx+c
是奇函數(shù),a,b,c為常數(shù)
(1)求實數(shù)c的值;
(2)若a,b∈Z,且f(1)=2,f(2)<3,求f(x)的解析式;
(3)對于(2)中的f(x),若f(x)≥m-2x對x∈(0,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-1|+|x+2|≥a2-2a-5對任意實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-4|+|x-a|,x∈R.
(1)證明:當(dāng)a=1時,不等式lnf(x)>1成立;
(2)關(guān)于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2+
k
x
6(k∈N*)的展開項的常數(shù)系數(shù)小于120,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及D中的任意兩數(shù)x1、x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(1)證明函數(shù)f1(x)=x2是定義域上的C函數(shù);
(2)判斷函數(shù)f2(x)=
1
x
(x<0)
是否為定義域上的C函數(shù),請說明理由;
(3)若f(x)是定義域為R的函數(shù),且最小正周期為T,試證明f(x)不是R上的C函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2+
a
2x
6展開式的中間項系數(shù)為20,如圖陰影部分是由曲線y=x2和圓x2+y2=a及x軸圍成的封閉圖形,則封閉圖形的面積S=
 

查看答案和解析>>

同步練習(xí)冊答案