A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 由已知|a-b2|+|b-a2|≤1結(jié)合絕對值不等式的性質(zhì)可得(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$,舉例說明由(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$不一定有|a-b2|+|b-a2|≤1,則答案可求.
解答 解:由|a-b2|+|b-a2|≤1,得|(a-b2)+(b-a2)|≤|a-b2|+|b-a2|≤1,
即|a2-a+b2-b|≤1,∴|$(a-\frac{1}{2})^{2}+(b-\frac{1}{2})^{2}$-$\frac{1}{2}$|≤1,得(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$;
反之,若(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$,取a=1,b=0,此時|a-b2|+|b-a2|=2>1.
∴“|a-b2|+|b-a2|≤1”是“(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$”的充分不必要條件.
故選:A.
點評 本題考查充分必要條件的判定方法,考查了絕對值不等式的應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日需求量n(瓶) | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
頻數(shù) | 5 | 5 | 8 | 12 | 10 | 6 | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com