分析 設(shè)|AF1|=t,|AB|=3x,根據(jù)雙曲線的定義算出t=3x,x=a,Rt△ABF2中算出cos∠BAF2,可得cos∠F2AF1,在△F2AF1中,利用余弦定理與雙曲線的離心率公式加以計算,可得答案.
解答 解:設(shè)|AF1|=t,|AB|=3x,則|BF2|=4x,|AF2|=5x,
根據(jù)雙曲線的定義,得|AF2|-|AF1|=|BF1|-|BF2|=2a,
即5x-t=(3x+t)-4x=2a,解得t=3x,x=a,
即|AF1|=3a,|AF2|=5a,
∵|AB|:|BF2|:|AF2|=3:4:5,得△ABF2是以B為直角的Rt△,
∴cos∠BAF2=$\frac{3}{5}$,
可得cos∠F2AF1=-$\frac{3}{5}$,
△F2AF1中,|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos∠F2AF1
=9a2+25a2-2×3a×5a×(-$\frac{3}{5}$)=52a2,
可得|F1F2|=$2\sqrt{13}$a,即c=$\sqrt{13}$a,
因此b=2$\sqrt{3}$a,
∴雙曲線的漸近線方程為y=±2$\sqrt{3}$x.
故答案為:y=±2$\sqrt{3}$x.
點評 本題著重考查了雙曲線的定義與簡單幾何性質(zhì)、直角三角形的判定與性質(zhì)、利用余弦定理解三角形等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥2 | B. | m≤-2 | C. | m≤-2或m≥2 | D. | -2≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | { 2 } | C. | { 5 } | D. | { 2,5 } |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{14}$ | B. | $\frac{9}{28}$ | C. | $\frac{3}{28}$ | D. | $\frac{3}{56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com