已知函數(shù),(1)若,求函數(shù)的極值;
(2)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

(1)極大值為0,無極小值;(2);(3)不存在.

解析試題分析:(1)先求函數(shù)定義域,然后求導(dǎo),判斷單調(diào)性,根據(jù)單調(diào)性求極值;(2)因為函數(shù)上單調(diào)遞減,所以恒成立,得到,下面只需求出
的最大值就行;(3)先假設(shè)存在,設(shè)出點(diǎn)得到,判斷方程無根,所以不存在兩點(diǎn).
試題解析:(1)的定義域為                  1分
,                2分
,單調(diào)遞增;
,單調(diào)遞減,       3分
時,取得極大值,無極小值。           4分
(2),,
若函數(shù)上單調(diào)遞減,
恒成立             5分
,只需      6分
時,,則,   7分
的取值范圍為             8分
(3)假設(shè)存在,不妨設(shè),
         9分
                10分
,整理得   11分
,, 12分,
上單調(diào)遞增,               13分
,故
∴不存在符合題意的兩點(diǎn)。          14分.
考點(diǎn):1.極值的求法;2.恒成立問題的求法;3.利用導(dǎo)數(shù)判斷方程無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(2)若,使)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上無零點(diǎn),求最小值;
(Ⅲ)若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負(fù)函數(shù)”;若對定義域內(nèi)的每一個,總有
則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
(1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當(dāng)時,若上是單調(diào)函數(shù),求的取值范圍.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處都取得極值.
(Ⅰ) 求,的值;
(Ⅱ)設(shè)函數(shù),若對任意的,總存在,使得、,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,判斷函數(shù)是否有極值;
(Ⅱ)若時,總是區(qū)間上的增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時點(diǎn)的橫坐標(biāo)).

查看答案和解析>>

同步練習(xí)冊答案