【題目】某飲水機(jī)廠生產(chǎn)的A,BC,D四類產(chǎn)品,每類產(chǎn)品均有經(jīng)濟(jì)型和豪華型兩種型號,某一月的產(chǎn)量如下表(單位:臺(tái))

A

B

C

D

經(jīng)濟(jì)型

5000

2000

4500

3500

豪華型

2000

3000

1500

500

1)在這一月生產(chǎn)的飲水機(jī)中,用分層抽樣的方法抽取n臺(tái),其中有A類產(chǎn)品49臺(tái),求n的值;

2)用隨機(jī)抽樣的方法,從C類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:7.99.4,7.8,9.4,8.6,9.210,9.47.9,9.4,從D類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:8.99.3,8.8,9.2,8.69.2,9.09.0,8.48.6,根據(jù)分析,你會(huì)選擇購買C類經(jīng)濟(jì)型飲水機(jī)與D類經(jīng)濟(jì)型飲水機(jī)中哪類產(chǎn)品.

【答案】1;(2)購買D類經(jīng)濟(jì)型飲水機(jī).

【解析】

1)根據(jù)分層抽樣每個(gè)個(gè)體被抽取到的概率相等,求出飲水機(jī)的總數(shù),即可求解;

2)分別求出C類、D類飲水機(jī)的平均值和方差,即可得出結(jié)論.

1)由題意得,飲水機(jī)的總數(shù)

臺(tái),

,解得;

2)由題知:

,

,

,所以我會(huì)選擇購買D類經(jīng)濟(jì)型飲水機(jī).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù) 1

1)若,曲線yfx)與x0處有相同的切線,求b;

2)若,求函數(shù)的單調(diào)遞增區(qū)間;

3)若對任意恒成立,求b的取值區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(總分150分)與理綜成績(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):

學(xué)生編號

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)x

52

64

87

96

105

123

132

141

理綜分?jǐn)?shù)y

112

132

177

190

218

239

257

275

參考數(shù)據(jù)及公式:

(1)求出y關(guān)于x的線性回歸方程;

(2)若小汪高考數(shù)學(xué)110分,請你預(yù)測他理綜得分約為多少分?(精確到整數(shù)位);

(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在

高考總分沖擊600分,請你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛千米,按交通法規(guī)則限制(單位:千米/小時(shí)),假設(shè)汽油的價(jià)格是每升元,而汽車每小時(shí)耗油升,司機(jī)工資是每小時(shí)元.

1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;

2)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.(精確到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點(diǎn),點(diǎn)上,且軸.

(1)求的方程;

(2)過的直線兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)

5

15

35

35

7

3

3

7

20

40

20

10

根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級的概率.

1)求出乙生產(chǎn)三等品的概率;

2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;

3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非

負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線,兩點(diǎn),求點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊答案