分析 由已知得每個(gè)人接受挑戰(zhàn)的概率是$\frac{1}{2}$,不接受挑戰(zhàn)的概率也是$\frac{1}{2}$,由此能求出這3個(gè)人中至少有2個(gè)人接受挑戰(zhàn)的概率.
解答 解:∵每個(gè)人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,
∴每個(gè)人接受挑戰(zhàn)的概率是$\frac{1}{2}$,不接受挑戰(zhàn)的概率也是$\frac{1}{2}$,
設(shè)事件M為“這3個(gè)C人中至少有2個(gè)人接受挑戰(zhàn)”,
則P(M)=${C}_{3}^{2}•(\frac{1}{2})^{2}•\frac{1}{2}+{C}_{3}^{3}•(\frac{1}{2})^{3}$=$\frac{1}{2}$.
點(diǎn)評 本題主要考查古典概型的概率問題,關(guān)鍵是掌握服從超幾何分布的概率公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{12}{5}$ | B. | $\frac{12}{5}$ | C. | -$\frac{5}{12}$ | D. | ±$\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com