18.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$.
(Ⅰ)計(jì)算a2,a3,a4,并由此猜想通項(xiàng)公式an
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.

分析 (I)根據(jù)遞推式依次計(jì)算a2,a3,a4
(II)先驗(yàn)證n=1時(shí)情況,假設(shè)n=k時(shí)猜想成立,證明n=k+1時(shí)結(jié)論正確即可.

解答 解:(I)a2=$\frac{1}{{a}_{1}+1}=\frac{1}{2}$,a3=$\frac{{a}_{2}}{{a}_{2}+1}=\frac{1}{3}$,a4=$\frac{{a}_{3}}{{a}_{3}+1}$=$\frac{1}{4}$.
猜想:an=$\frac{1}{n}$.
(II)n=1時(shí),a1=1,猜想正確,
假設(shè)n=k(k≥2,k∈N*)時(shí),猜想正確,即ak=$\frac{1}{k}$,
則當(dāng)n=k+1時(shí),ak+1=$\frac{{a}_{n}}{{a}_{n}+1}$=$\frac{\frac{1}{k}}{\frac{1}{k}+1}=\frac{1}{k+1}$.
∴n=k+1時(shí),猜想正確.
∴對(duì)一切n∈N*,猜想正確.
∴an=$\frac{1}{n}$.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法,掌握數(shù)學(xué)歸納法的證明步驟是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費(fèi)情況,隨機(jī)調(diào)查了100名學(xué)生,并將統(tǒng)計(jì)結(jié)果繪成直方圖如圖:
(Ⅰ)試估計(jì)該校學(xué)生在校月消費(fèi)的平均數(shù);
(Ⅱ)根據(jù)校服務(wù)部以往的經(jīng)驗(yàn),每個(gè)學(xué)生在校的月消費(fèi)金額x(元)和服務(wù)部可獲得利潤(rùn)y(元),滿足關(guān)系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問(wèn)題:
(。⿲(duì)于任意一個(gè)學(xué)生,校服務(wù)部可獲得的利潤(rùn)記為ξ,求ξ的分布列及數(shù)學(xué)期望.
(ⅱ)若校服務(wù)部計(jì)劃每月預(yù)留月利潤(rùn)的$\frac{2}{9}$,用于資助在校月消費(fèi)低于400元的學(xué)生,那么受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a,b,c∈R+,求證:$\frac{bc}{a}$+$\frac{ac}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.從1、2、3、4、5中不重復(fù)的隨機(jī)選取兩個(gè)數(shù),它們的和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶(hù))的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
 階梯級(jí)別第一階梯水量 第二階梯水量 第三階梯水量 
 月用水量范圍(單位:立方米)(0,10](10,15] (15,+∞)
從本市隨機(jī)抽取了10戶(hù)家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖所示的莖葉圖:
(1)現(xiàn)要在這10戶(hù)家庭中任意選取3家,求取到第二階梯水量的戶(hù)數(shù)X的分布列與數(shù)學(xué)期望;
(2)用抽到的10戶(hù)家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶(hù),若抽到n戶(hù)月用水量為二階的可能性最大,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若直線ax+3y-4=0和圓x2+y2+4x-1=0相切,則a的值為( 。
A.6±2$\sqrt{35}$B.2±$\sqrt{35}$C.8±$\sqrt{35}$D.1±$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.當(dāng)x>y>e-1時(shí),證明不等式:exln(1+y)>eyln(1+x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.“ALS 冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在24小內(nèi)接受挑戰(zhàn),要么選為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng),若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻,然后便可以邀請(qǐng)另外3個(gè)人參與這項(xiàng)活動(dòng),假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響,若某參與者接受挑戰(zhàn)后,對(duì)其他3個(gè)人發(fā)出邀請(qǐng),則這3個(gè)人中至少有2個(gè)接受挑戰(zhàn)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知盒中有4個(gè)紅球,4個(gè)黃球,4個(gè)白球,且每種顏色的四個(gè)球均按A,B,C,D編號(hào).現(xiàn)從中摸出4個(gè)球(除顏色與編號(hào)外球沒(méi)有區(qū)別).
(Ⅰ)求恰好包含字母A,B,C,D的概率;
(Ⅱ)設(shè)摸出的4個(gè)球中出現(xiàn)的顏色種數(shù)為X,求隨機(jī)變量X的分布列和期望E(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案