【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

【答案】(1)(2)

【解析】試題分析:(1)由于2bcosC+c=2a,是關(guān)于邊的一次齊次式,所以用正弦定理把邊化為角,可得到,。(2)由(1)中,可知A,B角己知,同時根據(jù)三角形內(nèi)角為,也可以sinC,所以,可解。

試題解析:(Ⅰ)在ABC中,∵2bcosC+c=2a,

由正弦定理,得2sinBcosC+sinC=2sinA,

∵A+B+C=π,

∴sinA=sin(B+C)=sinBcosC+cosBsinC,…

∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),

∴sinC=2cosBsinC,

∵0<C<π,∴sinC≠0,

,

∵0<B<π,∴

(Ⅱ)∵三角形ABC中,,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖計算該種蔬果日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);

(2)該經(jīng)銷商某天購進(jìn)了250公斤這種蔬果,假設(shè)當(dāng)天的需求量為公斤,利潤為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于1750元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三條內(nèi)線段、、交于點、用紅、藍(lán)兩種顏色對的三條邊線和三條內(nèi)線段染色,使同色的三線不交于一點.證明:在圖中所有的三角形中,至少存在兩個同色三角形,且它的各邊或延長線被另一線截得的兩線段之比的和大于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左、右焦點分別為,且點與橢圓C的上頂點構(gòu)成邊長為2的等邊三角形.

1)求橢圓C的方程;

2)已知直線l與橢圓C相切于點P,且分別與直線和直線相交于點.試判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,,,表示不超過的最大整數(shù),( )

A. 2018 B. 2019 C. 2020 D. 2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達(dá)式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)判斷上的零點的個數(shù),并說明理由.(提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上有21個點.證明:以這些點為端點組成的所有弧中,不超過120°的弧不少于100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案