【題目】關于二項式(x-1)2 013有下列命題:
(1)該二項展開式中非常數(shù)項的系數(shù)和是1;
(2)該二項展開式中第六項為C2 0136x2 007;
(3)該二項展開式中系數(shù)最大的項是第1 007項;
(4)當x=2 014時,(x-1)2 013除以2 014的余數(shù)是2 013.
其中正確命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:y=3x+3,求:
(1)點P(4,5)關于直線l的對稱點坐標;
(2)直線l1:y=x-2關于直線l的對稱直線的方程;
(3)直線l關于點A(3,2)的對稱直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的橢圓的兩焦點分別為雙曲線的頂點,直線與橢圓交于、兩點,且,點是橢圓上異于、的任意一點,直線外的點滿足, .
(1)求點的軌跡方程;
(2)試確定點的坐標,使得的面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月23日是世界讀書日,惠州市某中學在此期間開展了一系列的讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書迷”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、數(shù)學期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)某班主任對全班50名學生學習積極性和參加社團活動情況進行調查,統(tǒng)計數(shù)據(jù)如表1所示
表1
參加社團活動 | 不參加社團活動 | 合計 | |
學習積極性高 | 17 | 8 | 25 |
學習積極性一般 | 5 | 20 | 25 |
合計 | 22 | 28 | 50 |
(1)如果隨機從該班抽查一名學生,抽到參加社團活動的學生的概率是多少?抽到不參加社團活動且學習積極性一般的學生的概率是多少?
(2)運用獨立檢驗的思想方法分析:學生的學習積極性與參加社團活動情況是否有關系?并說明理由.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:
累積凈化量(克) | 12以上 | |||
等級 |
為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?
(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中, 平面,底面為直角梯形, , , ,且為線段上的一動點.
(Ⅰ)若為線段的中點,求證: 平面;
(Ⅱ)當直線與平面所成角小于,求長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com