【題目】關于二項式(x1)2 013有下列命題:

(1)該二項展開式中非常數(shù)項的系數(shù)和是1;

(2)該二項展開式中第六項為C2 0136x2 007;

(3)該二項展開式中系數(shù)最大的項是第1 007項;

(4)x2 014時,(x1)2 013除以2 014的余數(shù)是2 013.

其中正確命題有(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】此二項展開式各項系數(shù)的和為0,其常數(shù)項為1,(1)正確;

其第六項,(2)錯;

該二項展開式共有2014項,奇數(shù)項系數(shù)為正、偶數(shù)項系數(shù)為負,

由二項式系數(shù)的性質知第1007項與1008項系數(shù)的絕對值最大,(3)正確;

x=2014,2014除的余數(shù)為20141=2013.(4)正確。

其中正確命題有3個。

本題選擇C選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點P(4,5)關于直線l的對稱點坐標;

(2)直線l1yx-2關于直線l的對稱直線的方程;

(3)直線l關于點A(3,2)的對稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的橢圓的兩焦點分別為雙曲線的頂點,直線與橢圓交于、兩點,且,點是橢圓上異于、的任意一點,直線外的點滿足 . 

(1)求點的軌跡方程;

(2)試確定點的坐標,使得的面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,惠州市某中學在此期間開展了一系列的讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為讀書迷,低于60分鐘的學生稱為非讀書迷

)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為讀書迷與性別有關?

)將頻率視為概率,現(xiàn)在從該校大量學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中讀書迷的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、數(shù)學期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某班主任對全班50名學生學習積極性和參加社團活動情況進行調查,統(tǒng)計數(shù)據(jù)如表1所示

1


參加社團活動

不參加社團活動

合計

學習積極性高

17

8

25

學習積極性一般

5

20

25

合計

22

28

50

1)如果隨機從該班抽查一名學生,抽到參加社團活動的學生的概率是多少?抽到不參加社團活動且學習積極性一般的學生的概率是多少?

2)運用獨立檢驗的思想方法分析:學生的學習積極性與參加社團活動情況是否有關系?并說明理由.


005

001

0001


3841

6635

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 平面,底面為直角梯形, , ,且為線段上的一動點.

(Ⅰ)若為線段的中點,求證: 平面

(Ⅱ)當直線與平面所成角小于,求長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案