分析 (1)由acosA=bcosB,利用正弦定理可得:sin2A=sin2B,2A,2B∈(0,2π).由于a≠b,可得A≠B,可得A+B=$\frac{π}{2}$.即可得出C.
(2)由sinB=cosA 得y=$\frac{sinA+cosA}{sinAcosA}$,令 sinA+cosA=t∈(1,$\sqrt{2}$],則 sinAcosA=$\frac{{t}^{2}-1}{2}$,y=$\frac{2t}{{t}^{2}-1}$=$\frac{2}{t-\frac{1}{t}}$,根據(jù)t-$\frac{1}{t}$在(1,$\sqrt{2}$]單調(diào)遞增,即可求得實數(shù)y的取值范圍.
解答 (本題滿分為14分)
解:(1)∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,2A,2B∈(0,2π).
∴2A=2B,或2A=π-2B,
∵a≠b,∴A≠B,
∴A+B=$\frac{π}{2}$.
∴C=π-(A+B)=$\frac{π}{2}$.…(6分)
(2)∵sinB=cosA,
∴y=$\frac{sinA+cosA}{sinAcosA}$,…(7分)
∵sinA+cosA=$\sqrt{2}$sin(A+$\frac{π}{4}$),A∈(0,$\frac{π}{2}$),
∴A+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$).
∴sin(A+$\frac{π}{4}$)∈($\frac{\sqrt{2}}{2}$,1],
∴sinA+cosA∈(1,$\sqrt{2}$],…(9分)
令 sinA+cosA=t∈(1,$\sqrt{2}$],則 sinAcosA=$\frac{{t}^{2}-1}{2}$,…(11分)
∴y=$\frac{2t}{{t}^{2}-1}$=$\frac{2}{t-\frac{1}{t}}$,…(12分)
∵t-$\frac{1}{t}$在(1,$\sqrt{2}$]單調(diào)遞增,
∴0<t-$\frac{1}{t}$≤$\sqrt{2}$-$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴y≥2$\sqrt{2}$,
又a≠b,故等號不成立,
∴y的取值范圍為(2$\sqrt{2}$,+∞)…(14分)
點(diǎn)評 本題考查了正弦定理、倍角公式、同角三角函數(shù)基本關(guān)系式、“弦化切”、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com