A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 由函數(shù)的最大值求得ω的值,由正弦函數(shù)圖象變換,求得g(x)的解析式,由函數(shù)的對(duì)稱(chēng)性求得g(x)的對(duì)稱(chēng)軸,可知2×$\frac{7}{12}$π-2φ=kπ+$\frac{π}{2}$,k∈Z,解得φ=-$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,當(dāng)k=0時(shí),即可求得正數(shù)φ的最小值.
解答 解:由題意,函數(shù)f(x)在區(qū)間[0,$\frac{π}{6}$]上單調(diào)遞增,
∴sin($\frac{π}{6}$ω)=$\frac{\sqrt{3}}{2}$,
∴$\frac{π}{6}$ω=$\frac{π}{3}$,
∴ω=2,
由f(x)的圖象上所有的點(diǎn)向右平移φ個(gè)單位,
∴g(x)=sin(2x-2φ),
又g($\frac{7}{12}$π+x)=g($\frac{7}{12}$π-x),
所以x=$\frac{7}{12}$π是函數(shù)g(x)的一條對(duì)稱(chēng)軸,
故2×$\frac{7}{12}$π-2φ=kπ+$\frac{π}{2}$,k∈Z,
∴φ=-$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
當(dāng)k=0時(shí),正數(shù)φ取最小值$\frac{π}{3}$.
故答案選:C.
點(diǎn)評(píng) 本題考查正弦函數(shù)的最值,函數(shù)圖象變換,正弦函數(shù)的周期性質(zhì),考查學(xué)生對(duì)題目的理解和基礎(chǔ)知識(shí)的掌握能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (1,$\frac{π}{2}$) | C. | (0,$\frac{π}{2}$) | D. | (-1,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com