【題目】已知等差數(shù)列{an}中,a1=1,且a2+2,a3 , a4﹣2成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn= ,求數(shù)列{bn}的前n項和Sn

【答案】
(1)解:由a2+2,a3,a4﹣2成等比數(shù)列,

=(a2+2)(a4﹣2),

(1+2d)2=(3+d)(﹣1+3d),

d2﹣4d+4=0,解得:d=2,

∴an=1+2(n﹣1)=2n﹣1,

數(shù)列{an}的通項公式an=2n﹣1


(2)解:bn= = = ),

Sn= [(1﹣ )+( )+…+( )],

= (1﹣ ),

=

數(shù)列{bn}的前n項和Sn,Sn=


【解析】(1)由a2+2,a3 , a4﹣2成等比數(shù)列, =(a2+2)(a4﹣2),根據(jù)等差數(shù)列的通項公式求得d2﹣4d+4=0,即可求得d=2,數(shù)列{an}的通項公式;(2)bn= = = ),利用“裂項法”即可求得數(shù)列{bn}的前n項和Sn
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點(diǎn),連接 (如圖2).

(1)求證: ;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中, 平面, , 分別為 的中點(diǎn).

(1)求證: 平面;

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的通項公式為an=﹣n+p,數(shù)列{bn}的通項公式為bn=2n5 , 設(shè)cn= ,若在數(shù)列{cn}中c8>cn(n∈N* , n≠8),則實(shí)數(shù)p的取值范圍是(
A.(11,25)
B.(12,16]
C.(12,17)
D.[16,17)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓心在x軸上、半徑為2的圓C位于y軸右側(cè),且與直線 相切.
(1)求圓C的方程;
(2)在圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個零點(diǎn),求的取值范圍;

(2)設(shè),且,點(diǎn)是曲線上的一個定點(diǎn),是否存在實(shí)數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=1﹣ ,bn= ,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bn+1 ,數(shù)列{cn}的前n項和為Tn , 求Tn
(3)證明:1+ + +…+ ≤2 ﹣1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量ξ的概率分布如下,則P(ξ=10)=( )

ξ

1

2

3

4

5

6

7

8

9

10

P

m


A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點(diǎn)圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式 ;

②參考數(shù)據(jù): ,

查看答案和解析>>

同步練習(xí)冊答案