19.已知數(shù)列{an}的前n項(xiàng)和為Sn(Sn≠0),a1=$\frac{1}{2}$,且對(duì)任意正整數(shù)n,都有an+1+SnSn+1=0,則a1+a20=( 。
A.$\frac{209}{420}$B.$\frac{19}{21}$C.$\frac{23}{42}$D.$\frac{13}{42}$

分析 由an+1+SnSn+1=0可得Sn+1-Sn+SnSn+1=0,從而證明數(shù)列{$\frac{1}{{S}_{n}}$}是以2為首項(xiàng),1為公差的等差數(shù)列,從而解得.

解答 解:∵an+1+SnSn+1=0,
∴Sn+1-Sn+SnSn+1=0,
∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=1,
故數(shù)列{$\frac{1}{{S}_{n}}$}是以2為首項(xiàng),1為公差的等差數(shù)列,
故$\frac{1}{{S}_{n}}$=n+1,
故Sn=$\frac{1}{n+1}$,
故a1+a20=$\frac{1}{2}$+$\frac{1}{21}$-$\frac{1}{20}$=$\frac{209}{420}$,
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的應(yīng)用及構(gòu)造法的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知($\frac{4}{x}-\sqrt{\frac{x}{2}}$)9的展開(kāi)式中x3的系數(shù)為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.y=cos($\frac{π}{3}$+x)沿x軸向左平移φ(φ>0)個(gè)單位后的圖象關(guān)于y軸對(duì)稱(chēng),則φ的最小值是( 。
A.$\frac{5}{6}π$B.$\frac{2}{3}π$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-λ,等差數(shù)列{bn}滿足b1=a1,b1+b2+b3=9.
(1)求λ的值,并求{an},{bn}的通項(xiàng)公式;
(2)若cn=$\frac{{S}_{n}+1}{{S}_{n}•{S}_{n+1}}$,設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n,證明Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,4),且向量n$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$共線,則實(shí)數(shù)n=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\sqrt{3+2x{-x}^{2}}$的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知直線x-$\sqrt{3}$y+2=0過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線垂直,則雙曲線的實(shí)軸為(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿足:a1=0,an+1=npn+an(0<|p|<1).
(1)求an;
(2)求證:|an|<$\frac{|p|}{(1-|p|)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,|$\overrightarrow{BC}$|=5,$\overrightarrow{CD}$=$\overrightarrow{BC}$,則$\overrightarrow{AD}$•$\overrightarrow{CD}$=(  )
A.23B.25C.32D.41

查看答案和解析>>

同步練習(xí)冊(cè)答案