10.如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個(gè),從中任取一球,取了10次有7個(gè)白球,估計(jì)袋中數(shù)量最多的是白球.

分析 利用頻率估計(jì)概率,結(jié)合從中任取一球,取了10次有7個(gè)白球,即可得出結(jié)論.

解答 解:取了10次有7個(gè)白球,則取出白球的頻率是0.7,估計(jì)其概率是0.7,那么取出黃球的概率約是0.3,
取出白球的概率大于取出黃球的概率,所以估計(jì)袋中數(shù)量最多的是白球.
故答案為:白.

點(diǎn)評 本題考查概率知識,考查頻率估計(jì)概率,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將函數(shù)f(x)=cosx的圖象向右平移$\frac{π}{2}$個(gè)單位后所得的圖象的函數(shù)解析式為y=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象,如圖所示.
(1)求函數(shù)解析式,并求出函數(shù)的單調(diào)增區(qū)間;
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有兩個(gè)不同的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知偶函數(shù)f(x)的定義域?yàn)榧螹={x|ln|x|≤5},f(5)=50,當(dāng)x>0且x∈M時(shí),xf′(x)<2f(x)恒成立,則不等式$\frac{f(x)}{{x}^{2}}$≤2的解集為( 。
A.[-e5,-5]∪[5,e5]B.[-5,0)∪(0,5]C.[-e2,-2]∪[2,e2]D.[-2,0]∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,將拋物線C1:y=$\frac{1}{2}$x2+2x沿x軸對稱后,向右平移3個(gè)單位,再向下平移5個(gè)單位,得到拋物線C2,若拋物線C1的頂點(diǎn)為A,點(diǎn)P是拋物線C2上一點(diǎn),則△POA的面積的最小值為(  )
A.3B.3.5C.4D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sinx•cosx-2sin2x+1(x∈R)
(1)設(shè)函數(shù)g(x)=f(x+$\frac{φ}{2}$),φ∈(0,π),若g(x)為偶函數(shù),求g(x)最大值及相應(yīng)的x值的集合.
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=h(x)的圖象,若關(guān)于x的方程h(x)+k=0,在區(qū)間[0,π]上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)Z=i(1-i),則復(fù)數(shù)Z的共軛復(fù)數(shù)為1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=x2+2x,則f′(2)=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算下列各式的值:
(1)sin$\frac{π}{8}$cos$\frac{π}{8}$;
(2)sin2$\frac{π}{8}$-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案