19.已知f(x)=x2+2x,則f′(2)=(  )
A.2B.4C.6D.8

分析 根據(jù)導(dǎo)數(shù)的計算法則計算即可.

解答 解:∵f(x)=x2+2x,
∴f′(x)=2x+2,
∴f′(2)=2×2+2=6,
故選:C

點(diǎn)評 本題考查了利用求導(dǎo)法則求函數(shù)的導(dǎo)函數(shù)問題,是基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.P為雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線位于第一象限上的一點(diǎn),若點(diǎn)P到該雙曲線左焦點(diǎn)的距離為2$\sqrt{3}$,則點(diǎn)P到其右焦點(diǎn)的距離為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個,從中任取一球,取了10次有7個白球,估計袋中數(shù)量最多的是白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)M={1,2},N={a,b},a,b∈R,若M=N,則2a+b=4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.同時具有性質(zhì):
①最小正周期是π;
②圖象關(guān)于直線x=$\frac{π}{3}$對稱;
③在區(qū)間$[{\frac{5π}{6},π}]$上是單調(diào)遞增函數(shù)”的一個函數(shù)可以是( 。
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A,B為銳角三角形的兩個內(nèi)角,對于函數(shù):f(x)=($\frac{sinA}{cosB}$)|x|+($\frac{sinB}{cosA}$)|x|,下列說法正確的是( 。
A.f(x)在(-∞,0]上單調(diào)遞減,在(0,+∞)上單調(diào)遞增
B.f(x)在(-∞,0]上單調(diào)遞增,在(0,+∞)上單調(diào)遞減
C.f(x)在定義域上單調(diào)遞增
D.f(x)在定義域上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(3,$\sqrt{3}$),那么f(4)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)A在l上的射影為A1,若|AB|=|A1B|,則直線AB的斜率為±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某中職學(xué)校數(shù)學(xué)抽測考試成績見下表,李鈞和方莉分別是機(jī)電專業(yè)和旅游專業(yè)的學(xué)生,則下列結(jié)論正確的為(  )
 專業(yè) 人數(shù)平均分 
 旅游專業(yè) 153人 78
 機(jī)電專業(yè)72人 81 
A.在本次數(shù)學(xué)抽測考試?yán)钼x的成績比方莉好
B.在本次數(shù)學(xué)抽測考試方莉的成績一定沒有李鈞好
C.兩專業(yè)全體學(xué)生本次數(shù)學(xué)考試的平均成績?yōu)?\overline{x}$=$\frac{78+81}{2}$=79.5分
D.兩專業(yè)全體學(xué)生本次數(shù)學(xué)考試的平均成績?yōu)?\overline{x}$=$\frac{78×153+81×72}{153+72}$=78.96分

查看答案和解析>>

同步練習(xí)冊答案