3.先后兩次拋擲同一枚骰子,將得到的點數(shù)分別記為a,b.則a,b中至少有一個是奇數(shù)的概率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.4D.$\frac{1}{6}$

分析 a,b中至少有一個是奇數(shù)的對立事件是a,b都是偶數(shù),由此利用對立事件概率計算公式能求出a,b中至少有一個是奇數(shù)的概率.

解答 解:先后兩次拋擲同一枚骰子,將得到的點數(shù)分別記為a,b,
基本事件總數(shù)n=6×6=36,
a,b中至少有一個是奇數(shù)的對立事件是a,b都是偶數(shù),
∴a,b中至少有一個是奇數(shù)的概率p=1-$\frac{3×3}{36}$=$\frac{27}{36}=\frac{3}{4}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+$\frac{1}{10}$的值的一個流程圖,其中判斷框內(nèi)應(yīng)填人的條件是( 。
A.i>10B.i≥10C.i>5D.i≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列命題中真命題的是(1)(2)(3)(4)  (寫出所有真命題的序號)
(1)命題“若x=3,則x2-7x+12=0”及其逆命題,否命題,逆否命題中正確的有2個.
(2)已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為12.
(3)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
(4)已知△ABC中,角A,B,C的對邊分別為a,b,c,則$\frac{c+1}{a+b+c+1}$<$\frac{a+b+1}{2(a+b)+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.有五張卡片,它們的正、反面分別寫著0與1,2與3,4與5,6與7,8與9,將其中任意三張并排放在一起組成三位數(shù),共可組成多少個不同的三位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如表為吸煙與患病之間的二聯(lián)表:
患。ㄈ藬(shù))不患。ㄈ藬(shù))合計
吸煙(人數(shù))aba+b
不吸煙(人數(shù))cdc+d
合計a+cb+dn=a+b+c+d
根據(jù)如表,回答下列問題:
(Ⅰ)試根據(jù)上表,用含a,b,c,d,n的式子表示人群中患病的頻率為$\frac{a+c}{n}$;在(a+b)個人中患病的頻數(shù)為$\frac{(a+b)(a+c)}{n}$;在(a+b)個人中不患病的頻數(shù)為$\frac{(a+b)(b+d)}{n}$;在(c+d)個人中患病的頻數(shù)為$\frac{(a+c)(c+d)}{n}$;在(c+d)人中不患病的頻數(shù)為$\frac{(b+d)(c+d)}{n}$.
(Ⅱ)根據(jù)χ2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(c+d)(a+c)}$以及臨界值表,若a=40,b=10,c=30,d=20,能否有97.5%以上的把握認(rèn)為吸煙與患病有關(guān)?
P(χ2≥χ00.50.40.250.150.10
χ00.4550.7081.3232.7022.706
P(χ2≥χ00.050.0250.0100.0050.001
χ03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線4x-3y-2=0與圓(x-3)2+(y+5)2=36的位置關(guān)系為(  )
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標(biāo)原點的距離小于1的概率是( 。
A.$\frac{π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{6}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=sin($\frac{π}{4}$x-$\frac{π}{3}$),若對任意x∈R都有f(x1)≤f(x)≤f(x2)成立,|x1-x2|的最小值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓的中心是原點,長軸AB在x軸上,點C在橢圓上,且∠CBA=$\frac{π}{4}$,若AB=4,BC=$\sqrt{2}$,則橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{3{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習(xí)冊答案