5.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-7≥0}\\{y-3≤0}\end{array}\right.$,則z=$\frac{y}{x+1}$的最大值為( 。
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$D.$\frac{5}{14}$

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用直線的斜率的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,z=$\frac{y}{x+1}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到點(diǎn)D(-1,0)的斜率,
由圖象知AD的斜率最大,
由$\left\{\begin{array}{l}{y-3=0}\\{x+2y-7=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
此時(shí)z=$\frac{3}{1+1}$=$\frac{3}{2}$,
故選:A.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用直線的斜率公式,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個(gè)頂點(diǎn)分別為點(diǎn)A(4,5)、B(-2,-3)、C(4,-3),求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點(diǎn)E在線段CD上.
(1)求證:PE⊥BD;
(2)過點(diǎn)D作DM⊥BC交BC于點(diǎn)M,點(diǎn)N為PB中點(diǎn),若PE∥平面DMN,求$\frac{DE}{DC}的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=4,an+1=4-$\frac{4}{{a}_{n}}$(n∈N*),令bn=$\frac{1}{{a}_{n}-2}$
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=(a2n-1-2)(a2n+1-2),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若集合A={-2,-1,0,1,2},B={x|2x>1},則A∩B=(  )
A.{-1,2}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算$\frac{1}{2!}$+$\frac{2}{3!}$+$\frac{3}{4!}$+…+$\frac{2015}{2016!}$=1-$\frac{1}{2016!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知三棱柱ABC-A1B1C1,△ABC是正三角形,直線AA1⊥平面A1B1C1,D是棱A1C1的中點(diǎn).
(1)求證:B1D⊥平面AA1C1C;
(2)求證:BC1∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某學(xué)校采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做視力檢查,現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào).已知從1-16這16個(gè)數(shù)中被抽到的數(shù)是11,則編號(hào)在33-48中被抽到的數(shù)是( 。
A.39B.41C.43D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}中,a1=1,若an+1=3an+2(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=(  )
A.2×3n-1B.2×3n-1-1C.2×3n-1+1D.3×2n-1-2

查看答案和解析>>

同步練習(xí)冊(cè)答案