16.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0)(c>0).
(Ⅰ)若c=2,且F2關(guān)于直線y=$\frac{12}{5}$x+$\frac{5}{6}$的對(duì)稱點(diǎn)在橢圓E上,求橢圓E的方程;
(Ⅱ)如圖所示,若橢圓E的內(nèi)接平行四邊形的一組對(duì)邊分別經(jīng)過它的兩個(gè)焦點(diǎn),試求這個(gè)平行四邊形的面積的最大值.

分析 (Ⅰ)由題意可得,c=2,設(shè)F2關(guān)于直線y=$\frac{12}{5}$x+$\frac{5}{6}$的對(duì)稱點(diǎn)為(m,n),運(yùn)用點(diǎn)關(guān)于直線的對(duì)稱條件,解方程可得m,n,代入橢圓方程,可得a,b,進(jìn)而得到橢圓方程;
(Ⅱ)①當(dāng)直線AD的斜率不存在時(shí),求出三個(gè)點(diǎn)的坐標(biāo),然后求解平行四邊形的面積;
②當(dāng)直線AD的斜率存在時(shí),設(shè)直線AD的方程為y=k(x-c),與橢圓方程聯(lián)立,設(shè)點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).利用韋達(dá)定理,連結(jié)AF1,DF1,表示出面積表達(dá)式,然后求解最值.

解答 解:(Ⅰ)由題意可得,c=2,即a2-b2=4,
設(shè)F2關(guān)于直線y=$\frac{12}{5}$x+$\frac{5}{6}$的對(duì)稱點(diǎn)為(m,n),
可得$\frac{n}{m-2}$=-$\frac{5}{12}$,$\frac{1}{2}$n=$\frac{12}{5}$•$\frac{1}{2}$(m+2)+$\frac{5}{6}$,
解得m=-2,n=$\frac{5}{3}$,
將(-2,$\frac{5}{3}$)代入橢圓方程可得$\frac{4}{{a}^{2}}$+$\frac{25}{9^{2}}$=1,
解得a=3,b=$\sqrt{5}$,
即有橢圓的方程為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1;
(Ⅱ)①當(dāng)直線AD的斜率不存在時(shí),
此時(shí)易得A(c,$\frac{^{2}}{a}$),B(-c,$\frac{^{2}}{a}$),C(-c,-$\frac{^{2}}{a}$),D(c,-$\frac{^{2}}{a}$),
所以平行四邊形ABCD的面積為|AB|•|CD|=$\frac{4c^{2}}{a}$;
②當(dāng)直線AD的斜率存在時(shí),設(shè)直線AD的方程為y=k(x-c),
將其代入橢圓方程,整理得(b2+a2k2)x2-2ca2k2x+a2c2k2-a2b2=0.
設(shè)點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
則x1+x4=$\frac{2c{a}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}$,x1x4=$\frac{{a}^{2}{c}^{2}{k}^{2}-{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$.
連結(jié)AF1,DF1,
則平行四邊形ABCD的面積S=2${S}_{△AD{F}_{1}}$=|F1F2|•|y1-y4|=2c|y1-y4|,
又(y1-y42=k2(x1-x42=k2[(x1+x42-4x1x4]
=k2[($\frac{2c{a}^{2}{k}^{2}}{^{2}+{a}^{2}{k}^{2}}$)2-4•$\frac{{a}^{2}{c}^{2}{k}^{2}-{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$]=$\frac{4^{4}}{{a}^{2}}$•$\frac{{k}^{2}(1+{k}^{2})}{({k}^{2}+\frac{^{2}}{{a}^{2}})^{2}}$,
由a>b,可得(k2+$\frac{^{2}}{{a}^{2}}$)2-k2(1+k2)=$\frac{2^{2}-{a}^{2}}{{a}^{2}}$k2+$\frac{^{4}}{{a}^{4}}$,
當(dāng)a≤$\sqrt{2}$b時(shí),(y1-y42<$\frac{4^{4}}{{a}^{2}}$,即有S<$\frac{4c^{2}}{a}$;
當(dāng)a>$\sqrt{2}$b時(shí),S與k的取值有關(guān),無最值.
綜上,當(dāng)a≤$\sqrt{2}$b時(shí),平行四邊形的面積取得最大值$\frac{4c^{2}}{a}$;
當(dāng)a>$\sqrt{2}$b時(shí),S與k的取值有關(guān),無最值.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,直線與橢圓的綜合應(yīng)用,考查分析問題解決問題的能力,轉(zhuǎn)化思想的應(yīng)用,綜合性強(qiáng),屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在△ABC中,角A、B、C所對(duì)的邊為a、b、c,若向量$\overrightarrow{m}$=(cosB,sinC),$\overrightarrow{n}$=(cosC,-sinB),且$\overrightarrow{m}•\overrightarrow{n}$=-$\frac{\sqrt{2}}{2}$.
(1)求∠A的大。
(2)若邊a=$\sqrt{2}$且cosB=$\frac{3}{5}$,求△ABC的邊c的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知F1,F(xiàn)2是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左右焦點(diǎn),過F1的直線交橢圓于C,D兩點(diǎn),△CDF2的周長(zhǎng)為8,橢圓的離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l與橢圓E交于A,B且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求證原點(diǎn)O到直線l的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,橢圓的上頂點(diǎn)為D,右焦點(diǎn)為F2,延長(zhǎng)DF2交橢圓于E,且滿足|DF2|=3|F2E|,橢圓的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合.
(1)試求橢圓的方程;
(2)過點(diǎn)F2的直線l和該橢圓交于A,B兩點(diǎn),點(diǎn)C在橢圓上,O為坐標(biāo)原點(diǎn),且滿足$\overrightarrow{OC}=2\overrightarrow{OA}+3\overrightarrow{OB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC外,分別以AC、BC、AB為邊作正方形,得到三個(gè)正方形的面積依次為S1、S2、S3,若S1+S2=S3=8,則△ABC的面積最大值是(  )
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,拋物線y2=4x與橢圓C有相同的焦點(diǎn),點(diǎn)P為拋物線與橢圓C在第一象限的交點(diǎn),且|PF2|=$\frac{5}{3}$.
(I)求橢圓C的方程;
(Ⅱ)過點(diǎn)F1作直線l與橢圓C交于A,B兩點(diǎn),設(shè)$\overrightarrow{A{F_1}}=λ\overrightarrow{{F_1}B}$.若λ∈[1,2],求△ABF2面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓在其上一點(diǎn)A(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運(yùn)用該性質(zhì)解決以下問題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$.點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),則△OCD面積的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)頂點(diǎn),過橢圓的右焦點(diǎn)F作x軸的垂線,與其交于點(diǎn)C,若AB∥OC(O為坐標(biāo)原點(diǎn)),則直線AB的斜率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知全集U=R,若集合A={x|$\frac{x}{x-1}>0$},則∁UA=[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案