13.在區(qū)間[1,4]上任取兩個(gè)實(shí)數(shù),則所取兩個(gè)實(shí)數(shù)之和大于3的概率為( 。
A.$\frac{1}{18}$B.$\frac{9}{32}$C.$\frac{23}{32}$D.$\frac{17}{18}$

分析 本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,4]上任取兩個(gè)數(shù)x和y,寫出事件對(duì)應(yīng)的集合,做出面積,滿足條件的事件是x+y>3,寫出對(duì)應(yīng)的集合,做出面積,得到概率.

解答 解:由題意知本題是一個(gè)等可能事件的概率,
∵試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,4]上任取兩個(gè)數(shù)x和y,
事件對(duì)應(yīng)的集合是Ω={(x,y)|1≤x≤4,1≤y≤4}
對(duì)應(yīng)的面積是sΩ=9,
滿足條件的事件是x+y>3,事件對(duì)應(yīng)的集合是A={(x,y)|1≤x≤4,1≤y≤4,x+y>3}如圖
對(duì)應(yīng)的圖形(陰影部分)的面積是sA=$9-\frac{1}{2}×1×1$
∴根據(jù)等可能事件的概率得到P=1-$\frac{\frac{1}{2}}{9}=\frac{1}{18}$=$\frac{17}{18}$;
故選:D.

點(diǎn)評(píng) 本題考查等可能事件的概率,是一個(gè)幾何概型,幾何概型的概率的值是通過長(zhǎng)度、面積、和體積、的比值得到結(jié)果,是一個(gè)中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn+3=3n+1,數(shù)列{bn}滿足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.長(zhǎng)時(shí)間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某中學(xué)為了解A、B兩班學(xué)生手機(jī)上網(wǎng)的時(shí)長(zhǎng),分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時(shí)長(zhǎng)作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì),哪個(gè)班的學(xué)生平均上網(wǎng)時(shí)間較長(zhǎng);
(Ⅱ)從A、B班的樣本數(shù)據(jù)中各隨機(jī)抽取一個(gè)不超過20的數(shù)據(jù)分別記為a,b,求a≤b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某企業(yè)2014年年底給全部的800名員工共發(fā)放2000萬元年終獎(jiǎng),該企業(yè)計(jì)劃從2015年起,10年內(nèi)每年發(fā)放的年終獎(jiǎng)都比上一年增加60萬元,企業(yè)員工每年凈增a人.
(1)若a=10,在10年內(nèi),該企業(yè)的人均年終獎(jiǎng)是否會(huì)超過3萬元?
(2)這10年內(nèi)為使人均年終獎(jiǎng)年年有增長(zhǎng),該企業(yè)每年員工的凈增量不能超過多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從2,3,4,5,6這5個(gè)數(shù)字中任取3個(gè),則所得3個(gè)數(shù)之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列四個(gè)說法:
①若向量{$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$}是空間的一個(gè)基底,則{$\overrightarrow{a}$+$\overrightarrow$、$\overrightarrow{a}$-$\overrightarrow$、$\overrightarrow{c}$}也是空間的一個(gè)基底.
②空間的任意兩個(gè)向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是$\overrightarrow{a}$、$\overrightarrow$,則l∥m?$\overrightarrow{a}$∥$\overrightarrow$.
④若兩個(gè)不同平面α,β的法向量分別是$\overrightarrow{u}$、$\overrightarrow{v}$,且$\overrightarrow{u}$=(1,2,-2)、$\overrightarrow{v}$=(-2,-4,4),則α∥β.
其中正確的說法的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在股票買賣過程中,經(jīng)常用兩種曲線來描述價(jià)格變化情況:一種是即時(shí)價(jià)格曲線y=f(x),另一種是平均價(jià)格曲線y=g(x),如f(3)=4表示開始交易后第3小時(shí)的即時(shí)價(jià)格為4元;g(3)=2表示開始交易后三個(gè)小時(shí)內(nèi)所有成交股票的平均價(jià)格為2元.下面給出四個(gè)圖象,實(shí)線表示y=f(x),虛線表示y=g(x),其中可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(cosα,sinβ),$\overrightarrow$=(sinα,cosβ),若$\overrightarrow{a}$∥$\overrightarrow$,則α,β的值可以是( 。
A.α=$\frac{π}{3}$,β=-$\frac{π}{3}$B.α=$\frac{π}{3}$,β=$\frac{2π}{3}$C.α=$\frac{π}{5}$,β=-$\frac{7π}{10}$D.α=$\frac{π}{3}$,β=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將函數(shù)$y=sinx+\sqrt{3}cosx(x∈R)$的圖象向左平移n(n>0)個(gè)長(zhǎng)度單位后,所得到的圖象關(guān)于原點(diǎn)對(duì)稱,則n的最小值是$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案