2.勾股定理:在直角邊長為a、b,斜邊長為c的直角三角形中,有a2+b2=c2.類比勾股定理可得,在長、寬、高分別為p、q、r,體對角線長為d 的長方體中,有(  )
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

分析 類比勾股定理可得體對角線長與長、寬、高的關(guān)系.

解答 解:類比勾股定理可得,在長、寬、高分別為p、q、r,體對角線長為d 的長方體中,有p2+q2+r2=d2
故選:C

點(diǎn)評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時,常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex•cos x;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)
(3)y=ln$\sqrt{1+{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.實(shí)數(shù)x取什么值時,復(fù)數(shù)z=(x2+x-6)+(x2-2x-15)i是:①實(shí)數(shù);②虛數(shù);③純虛數(shù);④零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,滿足x2+y2≤1,x≥0,y≥0的點(diǎn)P(x,y)的集合對應(yīng)的平面圖形的面積為$\frac{π}{4}$;類似的,在空間直角坐標(biāo)系O-xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點(diǎn)P(x,y)的集合對應(yīng)的空間幾何體的體積為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè){an},{bn}是兩個等差數(shù)列,若cn=an+bn,則{cn}也是等差數(shù)列,類比上述性質(zhì),設(shè){sn},{tn}是等比數(shù)列,則下列說法正確的是( 。
A.若rn=sn+tn,則{rn}是等比數(shù)列B.若rn=sntn,則{rn}是等比數(shù)列
C.若rn=sn-tn,則{rn}是等比數(shù)列D.以上說明均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)類比平面內(nèi)直角三角形ABC的勾股定理,試給出空間中四面體P-DEF性質(zhì)的猜想;
(2)證明第(1)問中得到的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下面給出了四個類比推理,結(jié)論正確的是( 。
①由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$)
②在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則$\frac{AG}{GD}$=2;類比推出:在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則$\frac{AO}{OM}$=3.
③a,b為實(shí)數(shù),若a2+b2=0則a=b=0;類比推出:z1,z2為復(fù)數(shù),若z12+z22=0則z1=z2
④若數(shù)列{an}是等差數(shù)列,對于bn=$\frac{1}{n}({a_1}$+a2+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}是由1,2,3,…2016的一個排列構(gòu)成的數(shù)列,設(shè)任意m個相鄰的和構(gòu)成集合B,即B={x|x=$\sum_{i=1}^{n}$an+i,n=0,1,2,…,2016-m}.
(Ⅰ)若m=8,求B中元素的最大值;
(Ⅱ)下列情況下,集合B能否為單元素集,若能,寫出一個對應(yīng)的數(shù)列{an},若不能,說明理由.
①m=8,n=8k,k=0,1,2,…,251;
②m=3,n=3k,k=0,1,2,…,671.
(Ⅲ)對于數(shù)列{an},若m=8,記B紅元素的最大值為D,試求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.5名戰(zhàn)士站成一排,其中甲不站在最左邊的不同站法的種數(shù)為96.

查看答案和解析>>

同步練習(xí)冊答案