12.分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex•cos x;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)
(3)y=ln$\sqrt{1+{x}^{2}}$.

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則進(jìn)行求解即可.

解答 解:(1)y′=(ex)′cos x+ex(cos x)′=excos x-exsin x.…(4分)
(2)∵y=x3+1+$\frac{1}{x2}$,∴y′=3x2-$\frac{2}{x3}$.…(8分)
(3)y=ln$\sqrt{1+x2}$=$\frac{1}{2}$ln(1+x2),
∴y′=$\frac{1}{2}$•$\frac{1}{1+x2}$(1+x2)′=$\frac{1}{2}$•$\frac{1}{1+x2}$•2x=$\frac{x}{1+x2}$.
…(12分)

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)的運(yùn)算法則是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=ln5;
(2)f(x)=2x;
(3)f(x)=lgx;
(4)f(x)=cosx tanx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”事實(shí)上,有很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:$\sqrt{{{(x-a)}^2}+{{(y-b)}^2}}$可以轉(zhuǎn)化為平面上點(diǎn)M(x,y)與點(diǎn)N(a,b)的距離.結(jié)合上述觀點(diǎn),可得f(x)=$\sqrt{{x^2}+4x+20}$+$\sqrt{{x^2}+2x+10}$的最小值為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{3}{2n-5}$,記數(shù)列{an}的前n項(xiàng)和為Sn,則使Sn≤0成立的n的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且BC邊上的高為$\frac{a}{2}$,則$\frac{c}+\frac{c}$的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,在△ABC中,∠BAC=120°,AD⊥AB,|BC|=$\sqrt{3}$|BD|,|AD|=1,則|AC|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列向量中不是單位向量的是( 。
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知α=-1.58,則α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.勾股定理:在直角邊長(zhǎng)為a、b,斜邊長(zhǎng)為c的直角三角形中,有a2+b2=c2.類比勾股定理可得,在長(zhǎng)、寬、高分別為p、q、r,體對(duì)角線長(zhǎng)為d 的長(zhǎng)方體中,有( 。
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

同步練習(xí)冊(cè)答案