【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合, 交圓兩點(diǎn),過的平行線交于點(diǎn).

(1)證明為定值,并寫出點(diǎn)的軌跡方程;

(2)設(shè),過點(diǎn)作直線,交點(diǎn)的軌跡于兩點(diǎn) (異于),直線的斜率分別為,證明: 為定值.

【答案】(1) (2)見解析.

【解析】試題分析:(1)根據(jù)可得,從而,由此得到,所以的軌跡是橢圓(除去與軸的兩個交點(diǎn))且其方程為.(2)設(shè), ,那么,聯(lián)立直線方程和橢圓方程,消去利用韋達(dá)定理化簡可得,注意檢驗(yàn)的斜率不存在時也成立.

解析:1如圖,因?yàn)?/span> ,所以,,又圓的標(biāo)準(zhǔn)方程為,從而,所以,有題設(shè)可知 由橢圓的定義可得點(diǎn)的軌跡方程為.

(2)設(shè),

當(dāng)的斜率存在時,設(shè)為與橢圓聯(lián)立可得, .

因?yàn)?/span>兩點(diǎn)異于,所以,所以 .

當(dāng)的斜率不存在時,此時此時容易解出的坐標(biāo),此時.

綜上可知.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.

1)若軸,且滿足直線與圓相切,求圓的方程;

2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設(shè)計(jì)一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計(jì).軸截面如圖所示,設(shè).(注:底面直徑和高相等的圓柱叫做等邊圓柱.)

(1)用表示圓柱的高;

(2)實(shí)踐表明,當(dāng)球心和圓柱底面圓周上的點(diǎn)的距離達(dá)到最大時,景觀的觀賞效

果最佳,求此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù),).

(1)判斷曲線在點(diǎn)處的切線與曲線的公共點(diǎn)個數(shù);

(2)當(dāng)時,若函數(shù)有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時,求證:對于恒成立;

(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形, ,M是線段DE上的點(diǎn),滿足DM=2ME.

(1)證明:BE//平面MAC;

(2)求直線BF與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關(guān)于的不等式的解集為,當(dāng)時,求的最小值;

(Ⅲ)對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案