18.在△ABC中,若b=1,A=60°,△ABC的面積為$\sqrt{3}$,則a=( 。
A.13B.$\sqrt{13}$C.2D.$\sqrt{2}$

分析 由已知利用三角形面積公式可求c的值,進(jìn)而利用余弦定理即可解得a的值.

解答 解:∵b=1,A=60°,△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$×$1×c×\frac{\sqrt{3}}{2}$,
∴解得:c=4,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$
=$\sqrt{1+16-2×1×4×\frac{1}{2}}$=$\sqrt{13}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4sinθ.
(1)判斷直線l與曲線C的位置關(guān)系;
(2)在曲線C上求一點(diǎn)P,使得它到直線l的距離最大,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).求曲線C的直角坐標(biāo)方程,并指出曲線的類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)一組樣本數(shù)據(jù)與x1,x2,…,xn的平均數(shù)為$\overline{x}$,則這個(gè)樣本的方差為s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],樣本標(biāo)準(zhǔn)差s=$\sqrt{{s}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.用分析法證明問(wèn)題時(shí)是從要證明的結(jié)論出發(fā),逐步尋求使它成立的( 。
A.充要條件B.充分條件
C.必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知f(n)=${(\frac{1+i}{1-i})^{2n}}$+${(\frac{1-i}{1+i})^{2n}}$(n∈N*),則集合{f(n)}={-2,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上的點(diǎn)到焦點(diǎn)的最大距離為3,離心率為$\frac{1}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:x-my+1=0與橢圓C交于不同兩點(diǎn)A,B,與x軸交于點(diǎn)D,且滿足$\overrightarrow{DA}$=λ$\overrightarrow{DB}$,若$-\frac{1}{2}$≤λ<$-\frac{1}{3}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知a=lg2+1g3+1g4,則10a的值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.a(chǎn),b是兩條異面直線,A是不在a,b上的點(diǎn),則下列結(jié)論成立的是( 。
A.過(guò)A且平行于a和b的平面可能不存在
B.過(guò)A有且只有一個(gè)平面平行于a和b
C.過(guò)A至少有一個(gè)平面平行于a和b
D.過(guò)A有無(wú)數(shù)個(gè)平面平行于a和b

查看答案和解析>>

同步練習(xí)冊(cè)答案