分析 (1)當n=3時,集合A={1,2,3,4,5,6,7},當m=1時,求出f(1)=3,g(1)=4,從而求出F(1);當m=2時,求出f(2)=9,g(2)=12,從而求出F(2);當m=3時,求出f(3)=19,g(3)=16,從而求出F(3).
(2)A中共有n個偶數(shù),n+1個奇數(shù),偶子集的個數(shù)f(m)=${C}_{n}^{m}{C}_{n+1}^{0}+{C}_{n}^{n-2}{C}_{n+1}^{2}$+${C}_{n}^{m-4}{C}_{n+1}^{4}$+…+${{C}_{n}^{1}C}_{n+1}^{m-1}$,奇子集的個數(shù)g(m)=${C}_{n}^{m-1}{C}_{n+1}^{1}+{C}_{n}^{n-3}{C}_{n+1}^{3}$+${C}_{n}^{m-5}{C}_{n+1}^{5}$+…+${C}_{n}^{0}{C}_{n+1}^{m}$,從而F(m)=${C}_{n}^{m}{C}_{n+1}^{0}-{C}_{n}^{m-1}{C}_{n+1}^{1}+{C}_{n}^{m-2}{C}_{n+1}^{2}$-${C}_{n}^{m-3}{C}_{n+1}^{3}$+…+${C}_{n}^{1}{C}_{n+1}^{m-1}-{C}_{n}^{0}{C}_{n+1}^{m}$,再求出(1+x)n(1-x)n+1中xn的系數(shù)和(1+x)n(1-x)n+1=(1-x)(1+x)n(1-x)n=(1-x)(1-x2)n的展開式,由此能求出F(m).
解答 解:(1)當n=3時,集合A={1,2,3,4,5,6,7},
當m=1時,偶子集有{2},{4},{6},奇子集有{1},{3},{5},{7},
f(1)=3,g(1)=4,∴F(1)=-1.
當m=2時,偶子集有${C}_{3}^{2}+{C}_{4}^{2}$(2個數(shù)全是偶數(shù)或全是奇數(shù)),f(2)=9,
奇子集有${C}_{3}^{1}{C}_{4}^{1}$(1偶1奇),g(2)=12,∴F(2)=-3.
當m=3時,偶子集有${C}_{3}^{3}+{C}_{3}^{1}{C}_{4}^{2}$(3個數(shù)全是偶數(shù)或1偶2奇),f(3)=19,
奇子集有${C}_{3}^{2}{C}_{4}^{1}$+${C}_{4}^{3}$(2偶1奇或3奇),g(3)=16,∴F(3)=3.
(2)A中共有n個偶數(shù),n+1個奇數(shù),此時:
偶子集的個數(shù)f(m)=${C}_{n}^{m}{C}_{n+1}^{0}+{C}_{n}^{n-2}{C}_{n+1}^{2}$+${C}_{n}^{m-4}{C}_{n+1}^{4}$+…+${{C}_{n}^{1}C}_{n+1}^{m-1}$,
奇子集的個數(shù)g(m)=${C}_{n}^{m-1}{C}_{n+1}^{1}+{C}_{n}^{n-3}{C}_{n+1}^{3}$+${C}_{n}^{m-5}{C}_{n+1}^{5}$+…+${C}_{n}^{0}{C}_{n+1}^{m}$,
∴F(m)=${C}_{n}^{m}{C}_{n+1}^{0}+{C}_{n}^{m-2}{C}_{n+1}^{2}$+${C}_{n}^{m-4}{C}_{n+1}^{4}$+…+${C}_{n}^{4}{C}_{n+1}^{m-1}$-(${C}_{n}^{m-1}{C}_{n+1}^{1}+{C}_{n}^{m-3}{C}_{n+1}^{3}$+…+${C}_{n}^{0}{C}_{n+1}^{m}$)
=${C}_{n}^{m}{C}_{n+1}^{0}-{C}_{n}^{m-1}{C}_{n+1}^{1}+{C}_{n}^{m-2}{C}_{n+1}^{2}$-${C}_{n}^{m-3}{C}_{n+1}^{3}$+…+${C}_{n}^{1}{C}_{n+1}^{m-1}-{C}_{n}^{0}{C}_{n+1}^{m}$,
一方面,(1+x)n(1-x)n+1=(${C}_{n}^{0}+{C}_{n}^{1}x+…+{C}_{n}^{n}{x}^{n}$)(${C}_{n+1}^{0}-{C}_{n+1}^{1}x+…+(-1)^{n+1}{C}_{n+1}^{n+1}{x}^{n+1}$),
∴(1+x)n(1-x)n+1中xn的系數(shù)為:
${C}_{n}^{m}{C}_{n+1}^{0}-{C}_{n}^{m-1}{C}_{n+1}^{1}$+${{C}_{n}^{m-2}C}_{n+1}^{2}$-${C}_{n}^{m-3}{C}_{n+1}^{3}+…+{C}_{n}^{1}{C}_{n+1}^{m-1}-{C}_{n}^{0}{C}_{n+1}^{m}$,
另一方面,(1+x)n(1-x)n+1=(1-x)(1+x)n(1-x)n=(1-x)(1-x2)n的展開式中,
當m為奇數(shù)時,為得到xm,則應由(1-x)提供因數(shù)-x,(1-x2)n提供xm-1,
∴xm的系數(shù)為(-1)(-1)${\;}^{\frac{m-1}{2}}$C${\;}_{n}^{\frac{m-1}{2}}$=(-1)${\;}^{\frac{m+1}{2}}$${C}_{n}^{\frac{m-1}{2}}$,
故F(m)=(-1)${\;}^{\frac{m+1}{2}}$${C}_{n}^{\frac{m-1}{2}}$.
當m為偶數(shù)時,為得到xm,則應由(1-x)提供因數(shù)1,(1-x2)n提供xm,
∴xm的系數(shù)為$(-1)^{\frac{m}{2}}{C}_{n}^{\frac{m}{2}}$,∴F(m)=$(-1)^{\frac{m}{2}}{C}_{n}^{\frac{m}{2}}$.
綜上,F(xiàn)(m)=$\left\{\begin{array}{l}{(-1)^{\frac{m+1}{2}{C}_{n}^{\frac{m-1}{2}},n為奇數(shù)}}\\{(-1)^{\frac{m}{2}{C}_{n}^{\frac{m}{2}},n為偶數(shù)}}\end{array}\right.$.
點評 本題考查函數(shù)值的求法,考查集合、二項式定理等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想,是難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,x2≥0 | B. | ?x∈R,x2<0 | C. | ?x∈R,x2<0 | D. | ?x∈R,x2>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關(guān)于點(-$\frac{π}{6}$,0)對稱 | B. | 關(guān)于點($\frac{5π}{12}$,0)對稱 | ||
C. | 關(guān)于直線x=-$\frac{π}{6}$對稱 | D. | 關(guān)于直線x=$\frac{5π}{12}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com