分析 在圖(2)中連接DP,由折疊可知AD=PD,根據(jù)等邊對(duì)等角可得∠BAP=∠APD,又∠BDP為三角形ADP的外角,若設(shè)∠BAP為θ,則有∠BDP為2θ,再設(shè)AD=PD=x,根據(jù)正弦定理建立函數(shù)關(guān)系,根據(jù)正弦函數(shù)的圖象與性質(zhì)得出正弦函數(shù)的最大值,進(jìn)而得出x的最小值,即為AD的最小值.
解答 解:顯然A,P兩點(diǎn)關(guān)于折線DE對(duì)稱(chēng)
連接DP,圖(2)中,可得AD=PD,則有∠BAP=∠APD,
設(shè)∠BAP=θ,∠BDP=∠BAP+∠APD=2θ,
再設(shè)AD=DP=x,則有DB=1-x,
在△ABC中,∠APB=180°-∠ABP-∠BAP=120°-θ,
∴∠BPD=120°-2θ,又∠DBP=60°,
在△BDP中,由正弦定理知$\frac{1-x}{sin(120°-2θ)}$=$\frac{x}{sin60°}$
∴x=$\frac{\sqrt{3}}{2sin(120°-2θ)+\sqrt{3}}$,
∵0°≤θ≤60°,
∴0°≤120°-2θ≤120°,
∴當(dāng)120°-2θ=90°,即θ=15°時(shí),sin(120°-2θ)=1.
此時(shí)x取得最小值$\frac{\sqrt{3}}{2+\sqrt{3}}$=2$\sqrt{3}$-3,且∠ADE=75°.
則AD的最小值為2$\sqrt{3}$-3.
故答案為:2$\sqrt{3}$-3.
點(diǎn)評(píng) 此題考查了折疊的性質(zhì),三角形的外角性質(zhì),正弦定理,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠A1CB≥α | B. | ∠A1DB≤α | C. | ∠A1DB≥α | D. | ∠A1CB≤α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≤1 | B. | -$\frac{1}{3}$≤a≤1 | C. | a>1 | D. | a≥-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com