7.在同一直角坐標(biāo)系中,圓錐曲線C通過(guò)伸縮變換φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$變成曲線x2+y2=1,則曲線C的離心率為(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{2}}}{2}$

分析 由伸縮變換φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$,變成曲線x2+y2=1,可得曲線C的方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,即可得出離心率.

解答 解:由伸縮變換φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$,變成曲線x2+y2=1,
可得曲線C的方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,
則曲線C的離心率=$\sqrt{1-\frac{4}{9}}$=$\frac{\sqrt{5}}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了坐標(biāo)變換、橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)z滿(mǎn)足$\frac{z+3i}{z-i}$=3,i是虛數(shù)單位,則$\overline{z}$( 。
A.1+3iB.1-3iC.3iD.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某田徑隊(duì)有三名短跑運(yùn)動(dòng)員,根據(jù)平時(shí)訓(xùn)練情況統(tǒng)計(jì),甲、乙、丙三人100m跑(互不影響)的成績(jī),在13秒內(nèi)(稱(chēng)為合格)的概率分別為$\frac{3}{5},\frac{3}{4},\frac{1}{3}$,若對(duì)這三名短跑運(yùn)動(dòng)員的100m跑的成績(jī)進(jìn)行一次檢測(cè),則:①三人都合格的概率;②有2人合格的概率;③至少有一個(gè)合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.利用定積分的有關(guān)性質(zhì)和幾何意義可以得出定積分$\int_{-1}^1{[{{{(tanx)}^{11}}+{{(cosx)}^{21}}}]dx=}$( 。
A.$2\int_0^1{[{{{(tanx)}^{11}}+{{(cosx)}^{21}}}]dx}$B.0
C.$2\int_0^1{{{(cosx)}^{21}}dx}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若$sin(\frac{π}{6}-α)=\frac{2}{3},則cos(\frac{2π}{3}+2α)$=( 。
A.$\frac{1}{6}$B.$\frac{7}{9}$C.-$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合M={1,2,3},N={1},則下列關(guān)系正確的是(  )
A.N∈MB.N∉MC.N=MD.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,點(diǎn)P(t2,2t)(t為參數(shù)),若以原點(diǎn)O為原點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線l的極坐標(biāo)方程為ρcosθ-ρsinθ+2=0
(1)求點(diǎn)P的軌跡方程.
(2)求一點(diǎn)P,使它到直線l的距離最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知p:x≠1,q:x≥2,那么p是q的必要不充分條件.(填寫(xiě):“充分非必要”、“必要非充分”、“充分必要”、“既不充分也不必要”中的一種情況)

查看答案和解析>>

同步練習(xí)冊(cè)答案