【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米.最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

【答案】
(1)解:由題意可知MG=CH=x,

由△CHN∽△CAB可得 ,即 ,

∴NH= ,

∴M到地面的距離MH=MN+NH=


(2)解:DG=CD﹣CG=CD﹣MH=5﹣ ,

同理EG=9﹣ ,

∴tan∠DMG= = ,tan∠EMG= ,

∴tanθ=tan(∠EMG﹣∠DMG)= = =

∵0<x≤8,∴5x+ ≥2 =60,當(dāng)且僅當(dāng)5x= 即x=6時取等號,

∴tanθ≤ = ,

∴當(dāng)x=6時,tanθ取得最大值,即θ取得最大值


【解析】(1)根據(jù)相似三角形得出NH,從而得出MH;(2)計算DG,EG,得出tan∠DMG和tan∠EMG,利用差角公式計算tanθ,得出tanθ關(guān)于x的解析式,利用不等式求出tanθ取得最大值時對應(yīng)的x即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,BC所對的邊分別為ab,c,cosB

(Ⅰ)若c2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF,BC的中點

(1)求證:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的面對角線BC1上運動,則下列四個結(jié)論:
①三棱錐A﹣D1PC的體積不變;
②A1P∥平面ACD1;
③DP⊥BC1;
④平面PDB1⊥平面ACD1
其中正確的結(jié)論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,且

(1)求拋物線的方程;

(2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點和頂點的坐標(biāo);
(2)求拋物線 y2﹣6x=0的焦點坐標(biāo),準線方程和對稱軸;
(3)求焦點在x軸上,兩頂點間的距離是8,e= 的 雙曲線的標(biāo)準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)化簡:
(2)已知:sinαcosα= ,且 <α< ,求cosα﹣sinα的值.

查看答案和解析>>

同步練習(xí)冊答案