1.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{2x+y≤3}\end{array}\right.$,則$\frac{y+1}{x+2}$的最小值為$\frac{2}{3}$.

分析 利用換元法將條件轉(zhuǎn)化為直線斜率,結(jié)合線性規(guī)劃的知識進行求解即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
$\frac{y+1}{x+2}$的幾何意義是區(qū)域內(nèi)的點到定點D(-2,-1)的斜率,
則由圖象知DA的斜率最小,DB的斜率最大,
由$\left\{\begin{array}{l}{x+3y=4}\\{2x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
則DA的斜率k=$\frac{1+1}{1+2}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線的斜率公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.log2$\frac{4}{7}$+log27=( 。
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個頂點A(m,n)、B(2,1)、C(-2,3);
(1)求BC邊所在直線的方程;
(2)BC邊上中線AD的方程為2x-3y+6=0,且S△ABC=7,求點A的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x軸、y軸正方向上的單位向量分別是$\overrightarrow{i}$、$\overrightarrow{j}$,坐標平面上點列An、Bn(n∈N*)分別滿足下列兩個條件:①$\overrightarrow{OA_1}$=$\overrightarrow{j}$且$\overrightarrow{A_nA_{n+1}}$=$\overrightarrow{i}$+$\overrightarrow{j}$;②$\overrightarrow{OB_1}$=4$\overrightarrow{i}$且$\overrightarrow{B_nB_{n+1}}$=$\frac{1}{n(n+1)}$×4$\overrightarrow{i}$;
(1)寫出$\overrightarrow{OA_2}$及$\overrightarrow{OA_3}$的坐標,并求出$\overrightarrow{OA_n}$的坐標;
(2)若△OAnBn+1的面積是an,求an(n∈N*)的表達式;
(3)對于(2)中的an,是否存在最大的自然數(shù)M,對一切n∈N*都有an≥M成立?若存在,求出M,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若二次函數(shù)f(x)=(m-1)x2+2mx+1是偶函數(shù),則f(x)在區(qū)間(-∞,0]上是(  )
A.增函數(shù)B.先增后減函數(shù)C.減函數(shù)D.先減后增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\left\{{\begin{array}{l}{(3-a)x-1,x<2}\\{{{log}_a}(x-1)+1,x≥2}\end{array}}$,若f(x)是R上的增函數(shù),則a的取值范圍為( 。
A.a<3B.1<a<3C.2<a<3D.2≤a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)-(-2)4+(-2)-3+(-$\frac{1}{2}$)-3-(-$\frac{1}{2}$)3;
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=lg(x+2)的定義域為( 。
A.[0,+∞)B.(0,+∞)C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆山東臨沭一中高三上學(xué)期10月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

不等式的解集為

查看答案和解析>>

同步練習(xí)冊答案