12.已知tanθ=-2,則 sin2θ-cos2θ=-1.

分析 利用同角三角函數(shù)的基本關系,二倍角的正弦公式,求得要求式子的值.

解答 解:∵tanθ=-2,則sin2θ-cos2θ=$\frac{2sinθcosθ{-cos}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ-1}{{tan}^{2}θ+1}$=$\frac{-4-1}{4+1}$=-1,
故答案為:-1.

點評 本題主要考查同角三角函數(shù)的基本關系,二倍角的正弦公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.過點($\sqrt{2}$,0)引直線l與曲線y=$\sqrt{1-{x}^{2}}$相交于A,B兩點,O為坐標原點,當△AOB的面積取最大值時,直線l的斜率等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|x<1},B={x|2x<1},則( 。
A.A∩B={x|x<0}B.A∪B=RC.A∩B={x|x<1}D.A∪B={x|x<0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知曲線${C_1}:y=cosx,{C_2}:y=sin(2x+\frac{2π}{3})$,則下面結論正確的是( 。
A.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移$\frac{π}{6}$個單位長度,得到曲線C2
B.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移 $\frac{π}{12}$個單位長度,得到曲線C2
C.把C1上各點的橫坐標縮短到原來的$\frac{1}{2}$倍,縱坐標不變,再把得到的曲線向右平移 $\frac{π}{6}$個單位長度,得到曲線C2
D.把C1上各點的橫坐標縮短到原來的 $\frac{1}{2}$倍,縱坐標不變,再把得到的曲線向左平移 $\frac{π}{12}$個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知關于x的方程x+$\frac{a}{{x}^{2}}$=$\frac{3}{x}$有兩個實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在四棱錐P-ABCD中,底面ABCD為平行四邊形,G為PB的中點,則三棱錐D-GAB與三棱錐P-GAC體積之比為1:1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出 2017 個數(shù):1,2,4,7,11,…,要計算這2017個數(shù)的和,現(xiàn)已給出了該問題的程序框圖如圖所示,那么框圖中判斷框①處和執(zhí)行框②處應分別填入( 。
A.i≤2017?;p=p+i-1B.i≤2018?;p=p+i+1C.i≤2018?;p=p+iD.i≤2017?;p=p+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.從集合{11,12,13,14,15}中隨機取出一個數(shù),設事件A為“取出的數(shù)為偶數(shù)”,事件B為“取出的數(shù)為奇數(shù)”,則事件A與B( 。
A.是互斥且對立事件B.是互斥且不對立事件
C.不是互斥事件D.不是對立事件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果某年年份的各位數(shù)字之和為8,我們稱該年為“吉祥年”.例如,今年2015年的各數(shù)字之和為8,所以今年恰為“吉祥年”,那么從2000年到3999年中“吉祥年“共有( 。﹤.
A.42B.43C.49D.45

查看答案和解析>>

同步練習冊答案