17.觀察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.
可以推測(cè),m+n-p=62.

分析 觀察5個(gè)等式左邊的α的系數(shù),以及等式右邊各項(xiàng)系數(shù)的特點(diǎn),m、n、p的變化趨勢(shì),不難歸納出三個(gè)數(shù)的變化規(guī)律,再求出m、n、p的值,可求出答案.

解答 解:由五個(gè)等式可得:第一項(xiàng)的系數(shù)分別為:
2=21,8=23,32=25,…,128=27,所以m=29=512;
由每一行倒數(shù)第二項(xiàng)的系數(shù)正負(fù)交替出現(xiàn),1×2,-2×4,3×6,-4×8,5×10,可推算出p=50,
根據(jù)每行的系數(shù)和都為1,可得n=-400,
所以m+n-p=512-400-50=62.
故答案為:62.

點(diǎn)評(píng) 本題考查歸納推理,難點(diǎn)是根據(jù)能夠找出數(shù)之間的內(nèi)在規(guī)律,考查觀察、分析、歸納的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合M={x|-1<x<1},N={x|x2<2,x∈Z},則( 。
A.M⊆NB.N⊆MC.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知450°<α<510°,則$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值是( 。
A.-sin$\frac{α}{2}$B.cos$\frac{α}{2}$C.sin$\frac{α}{2}$D.-cos$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=lnx+\frac{2a}{x+1}$,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)x>0,且x≠1時(shí),$\frac{lnx}{x-1}>\frac{a}{x+1}$恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$).
(1)求f(x)的最小正周期和f($\frac{π}{8}$)的值;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖為某小區(qū)100為居民2015年月平均用水量(單位:t)的頻率分布直方圖的一部分,據(jù)此可求這100位居民月平均用水量的中位數(shù)為2.02噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{2x-1}$+f′(1),則f′(1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合X={x∈Z|x2-x-6≤0},Y={y|y=1-x2,x∈R},則X∩Y=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1,0,1}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)y=x-ex的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案