2.如圖為某小區(qū)100為居民2015年月平均用水量(單位:t)的頻率分布直方圖的一部分,據(jù)此可求這100位居民月平均用水量的中位數(shù)為2.02噸.

分析 根據(jù)頻率分布直方圖,求出使直方圖中左右兩邊頻率相等對應的橫坐標的值.

解答 解:根據(jù)頻率分布直方圖,得;
0.08×0.5+0.16×0.5+0.30×0.5+0.44×0.5=0.49<0.5,
0.49+0.5×0.5=0.74>0.5,
設中位數(shù)為a,則
0.49+(a-2)×0.5=0.5,
解得a=2.02,
∴估計中位數(shù)是2.02.
故答案為:2.02.

點評 本題考查了利用頻率分布直方圖求中位數(shù)的應用問題,解題時應根據(jù)中位數(shù)的左右兩邊頻率相等進行解答,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知a,b分別是方程3x-2+$\frac{x}{3}$=2,log3(x-1)+x=6的兩根,則a+b的值為(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.5555-1除以8的余數(shù)是( 。
A.6B.7C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.復數(shù)$\frac{2-i}{1+{i}^{5}}$在復平面內(nèi)所對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.觀察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.
可以推測,m+n-p=62.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知首項不為0的等差數(shù)列{an}中,前n項和為Sn,滿足a4=2a2,且S1,S2,S4-1成等比數(shù)列.
(Ⅰ)求an和Sn;
(Ⅱ)記${b_n}=\frac{1}{S_n}$,數(shù)列{bn}的前項和Tn.若3m-8≤Tn<2m-1對任意n∈N*恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)f(x)的圖象是由y=sinx的圖象通過怎樣平移而得到的;
(3)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.平面凸四邊形ABCD,AB=2,BC=3,CD=4,AD=5,則此四邊形的最大面積為$2\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.等比數(shù)列{an}滿足a3a5=64,a3+a5=20,且公比為大于1的數(shù).
(1)求{an}通項公式;
(2)設bn=2n-1,求{an+bn}前n項和.

查看答案和解析>>

同步練習冊答案