18.已知A(5,-2),B(-5,-1),且$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$,則P點坐標(biāo)是(0,-$\frac{3}{2}$).

分析 設(shè)P點的坐標(biāo)為(x,y),根據(jù)向量的坐標(biāo)運(yùn)算即可求出.

解答 解:設(shè)P點的坐標(biāo)為(x,y),
則$\overrightarrow{AP}$=(x-5,y+2),$\overrightarrow{AB}$=(-10,1),
∵$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$,
∴(x-5,y+2)=$\frac{1}{2}$(-10,1)=(-5,$\frac{1}{2}$),
∴x-5=-5,y+2=$\frac{1}{2}$,
即x=0,y=-$\frac{3}{2}$,
∴P(0,-$\frac{3}{2}$),
故答案為:(0,-$\frac{3}{2}$).

點評 本題考查了向量的坐標(biāo)運(yùn)算和向量共線,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知U=R,M={x|x2≤4},N={x|2x>1},則M∩N=(0,2],M∪CUN=(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)方程x2+y2+2$\sqrt{3}$x-ay-2a=0表示圓,實數(shù)a的取值范圍是(-∞,-6)∪(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,g(x)=|$\overrightarrow{a}+\overrightarrow$|,則下列性質(zhì)正確的是( 。
A.函數(shù)f(x)的最小正周期為2πB.函數(shù)g(x)為奇函數(shù)
C.函數(shù)f(x)在[0.π]遞減D.函數(shù)g(x)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若三點A(-2,-2),B(0,m),C(n,0)(mn≠0)共線,則$\frac{1}{m}$+$\frac{1}{n}$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個頂點分別為點A(4,5)、B(-2,-3)、C(4,-3),求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=3,an+1=-$\frac{1}{{a}_{n}+1}$(n∈N*),能使an=3的n可以等于( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}的各項都是正數(shù),a1=2,an+12=an2+2,那么此數(shù)列的通項公式為an=$\sqrt{2n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若集合A={-2,-1,0,1,2},B={x|2x>1},則A∩B=( 。
A.{-1,2}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊答案