分析 (1)根據(jù)正弦定理將角化邊,結(jié)合內(nèi)角和定理得出C;
(2)根據(jù)正弦定理用A表示出b,根據(jù)A的范圍得出b的最值.
解答 解:(1)△ABC中,∵c(cosA+cosB)=-(a+b)cos(A+B),
∴sinCcosA+sinCcosB=sinAcosC+sinBcosC,
即sin(C-A)=sin(B-C).
∴C-A=B-C.即2C-A-B=0,
又∵A+B+C=0,∴C=$\frac{π}{3}$.
(2)由正弦定理得$\frac{a}{sinA}=\frac{sinB}$,即$\frac{2}{sinA}=\frac{sin(\frac{2π}{3}-A)}$,
∴b=$\frac{\sqrt{3}cosA+sinA}{sinA}$=$\sqrt{3}$cotA+1.
∵$\frac{1}{2}$≤cosA$≤\frac{\sqrt{2}}{2}$,∴$\frac{π}{4}≤A≤\frac{π}{3}$.∴$\frac{\sqrt{3}}{3}$≤cotA≤1.
∴當(dāng)cotA=1時,b取得最大值$\sqrt{3}+1$.
點評 本題考查了正弦定理在解三角形中的應(yīng)用,三角函數(shù)的恒等變換,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {x|-1≤x≤0} | C. | {x|1≤x≤2} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cosx在[2kπ,2kπ+$\frac{π}{2}$](k∈Z)上是減函數(shù) | |
B. | y=cosx在[-π,0]上是增函數(shù) | |
C. | y=cosx在第一象限是減函數(shù) | |
D. | y=sinx和y=cosx在[$\frac{π}{2}$,π]上都是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 4△x | C. | 4+2△x | D. | 4+2(△x)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com