【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),若,則點(diǎn)的橫坐標(biāo)為( )
A. 5 B. 4 C. 3 D. 2
【答案】B
【解析】
由題意結(jié)合拋物線的性質(zhì)首先求得直線AB的方程,然后利用直線方程求解點(diǎn)D的橫坐標(biāo)即可.
設(shè)AB的中點(diǎn)為H,拋物線y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線為,
設(shè)A、B、H在準(zhǔn)線上的射影分別為A',B',H',
則,由拋物線的定義可得:
,,即,
則,
即點(diǎn)H的橫坐標(biāo)為2,設(shè)直線AB:y=kx+3,
代入拋物線方程整理得k2x2+(6k-4)x+9=0.
由可得:且.
又,解得:或(舍去).
則直線,AB的中點(diǎn)為,
AB的中垂線方程為,
令y=0,解得x=4.
即點(diǎn)的橫坐標(biāo)為4.
本題選擇B選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)垂直于軸的直線與拋物線相交于兩點(diǎn),拋物線在兩點(diǎn)處的切線及直線所圍成的三角形面積為.
(1)求拋物線的方程;
(2)設(shè)是拋物線上異于原點(diǎn)的兩個(gè)動(dòng)點(diǎn),且滿足,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)任意實(shí)數(shù)都有函數(shù)的圖象與直線相切,則稱函數(shù)為“恒切函數(shù)”,設(shè)函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)為“恒切函數(shù)”,
①求實(shí)數(shù)的取值范圍;
②當(dāng)取最大值時(shí),若函數(shù)也為“恒切函數(shù)”,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)作出函數(shù)的圖象;
(2)求函數(shù)的單調(diào)區(qū)間,并指出其單調(diào)性;
(3)求()的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門共有員工60人,為調(diào)查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眼的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù)?
(2)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從該單位任取1人,估計(jì)拍到的此人為睡眠充足者的概率;
(3)再從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立,求A的睡眠時(shí)間不少于B的睡眼時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用分別表示的三個(gè)內(nèi)角所對(duì)邊的邊長,表示的外接圓半徑.
(1),求的長;
(2)在中,若是鈍角,求證:;
(3)給定三個(gè)正實(shí)數(shù),其中,問滿足怎樣的關(guān)系時(shí),以為邊長,為外接圓半徑的不存在,存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;
②若函數(shù)定義域?yàn)?/span>且滿足,則它的圖象關(guān)于軸對(duì)稱;
③函數(shù)的值域?yàn)?/span>;
④若函數(shù)在上有零點(diǎn),則實(shí)數(shù)的取值范圍是.
其中正確的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寧德市某汽車銷售中心為了了解市民購買中檔轎車的意向,在市內(nèi)隨機(jī)抽取了100名市民為樣本進(jìn)行調(diào)查,他們?cè)率杖?單位:千元)的頻數(shù)分布及有意向購買中檔轎車人數(shù)如下表:
月收入 | [3,4) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
頻數(shù) | 6 | 24 | 30 | 20 | 15 | 5 |
有意向購買中檔轎車人數(shù) | 2 | 12 | 26 | 11 | 7 | 2 |
將月收入不低于6千元的人群稱為“中等收入族”,月收入低于6千元的人群稱為“非中等收入族”.
(Ⅰ)在樣本中從月收入在[3,4)的市民中隨機(jī)抽取3名,求至少有1名市民“有意向購買中檔轎車”的概率.
(Ⅱ)根據(jù)已知條件完善下面的2×2列聯(lián)表,并判斷有多大的把握認(rèn)為有意向購買中檔轎車與收入高低有關(guān)?
非中等收入族 | 中等收入族 | 總計(jì) | |||||
有意向購買中檔轎車人數(shù) | 40 | ||||||
無意向購買中檔轎車人數(shù) | 20 | ||||||
總計(jì) | 100 | ||||||
0.10 | 0.05 | 0.010 | 0.005 | ||||
2.706 | 3.841 | 6.635 | 7.879 | ||||
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com