2.已知函數(shù)f(x)=x3+3x2-9x+a.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最小值為20,求它在該區(qū)間上的最大值.

分析 (1)由已知得f′(x)=3x2+6x-9,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)推導(dǎo)出f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)在區(qū)間[-2,2]上的最大值.

解答 解:(1)∵f(x)=x3+3x2-9x+a,
∴f′(x)=3x2+6x-9,
令f′(x)=3x2+6x-9>0,解得x<-3或x>1,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-3],[1,+∞).
(2)∵f(x)=x3+3x2-9x+a,
∴f(-2)=22+a,f(2)=20+a,
∴f(-2)>f(2).
∵在(-3,3)上f′(x)>0,∴f(x)在[-1,2]上單調(diào)遞增,
又由于f(x)在[-2,-1]上單調(diào)遞減,
∴f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,
∵f(x)在區(qū)間[-2,2]上的最小值為20,
∴f(-1)=-1+3+9+a=11+a=20,解得 a=9.
故f(x)=-x3+3x2+9x+9,
∴f(2)=22+a=22+9=31,
即函數(shù)f(x)在區(qū)間[-2,2]上的最大值為31.

點(diǎn)評(píng) 本題考查函數(shù)在閉區(qū)間上的最大值的求法,考查函數(shù)的增區(qū)間的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知正六邊形ABCDEF中,G、H、I、J、K、L分別為AB、BC、CD、DE、EF、FA的中點(diǎn),圓O為六邊形GHIJKL的內(nèi)切圓,則在正六邊形ABCDEF中投擲一點(diǎn),該點(diǎn)不落在圓O內(nèi)的概率為(  )
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{8}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x(x-c)2在x=2處有極值且c<3,c∈R.
(1)求c的值;
(2)求f(x)在區(qū)間[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a>0,用綜合法或分析法證明:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(I)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)F2的直線m與曲線C交于P、Q兩點(diǎn),若|PQ|2=|F1P|2+|F1Q|2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知(a+1)x-1-lnx≤0對(duì)于任意x∈[$\frac{1}{2}$,2]恒成立,則a的最大值為1-2ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=ex,g(x)為其反函數(shù).
(1)說(shuō)明函數(shù)f(x)與g(x)圖象的關(guān)系(只寫(xiě)出結(jié)論即可);
(2)證明f(x)的圖象恒在g(x)的圖象的上方;
(3)設(shè)直線l與f(x)、g(x)均相切,切點(diǎn)分別為(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)x≠y,且兩數(shù)列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均為等差數(shù)列,則$\frac{_{4}-_{3}}{{a}_{2}-{a}_{1}}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=xlnx,g(x)=ax-$\frac{1}{x}$-a+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x>1時(shí),函數(shù)y=g(x)的圖象恒在函數(shù)y=$\frac{{({a+1})f(x)}}{x}$的圖象的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案