如圖,正方體ABCD-A1B1C1D1中,E為AB中點,F(xiàn)為正方形BCC1B1的中心.
(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.
分析:解法一:(1)取BC中點H,連結(jié)FH,EH,證明∠FEH為直線EF與平面ABCD所成角,即可得出結(jié)論;
(2)取A1C中點O,連接OF,OA,則∠AOA1為異面直線A1C與EF所成角,由余弦定理,可得結(jié)論;
解法二:設正方體棱長為2,以B為原點,BC為x軸,BA為y軸,BB1為z軸,建立空間直角坐標系,利用向量的夾角公式,即可求出結(jié)論.
解答:解法一:(1)取BC中點H,連結(jié)FH,EH,設正方體棱長為2.
∵F為BCC1B1中心,E為AB中點.
∴FH⊥平面ABCD,F(xiàn)H=1,EH=
2

∴∠FEH為直線EF與平面ABCD所成角,且FH⊥EH.
∴tan∠FEH=
FH
EH
=
1
2
=
2
2
.…(6分)
(2)取A1C中點O,連接OF,OA,則OF∥AE,且OF=AE.
∴四邊形AEFO為平行四邊形.∴AO∥EF.
∴∠AOA1為異面直線A1C與EF所成角.
∵A1A=2,AO=A1O=
3

∴△AOA1中,由余弦定理得cos∠A1OA=
1
3
.…(12分)
解法二:設正方體棱長為2,以B為原點,BC為x軸,BA為y軸,BB1為z軸,建立空間直角坐標系.則B(0,0,0),B1(0,0,2),E(0,1,0),F(xiàn)(1,0,1),C(2,0,0),A1(0,2,2).
(1)
EF
=(1,-1,1),
BB1
=(0,0,2),且
BB1
為平面ABCD的法向量.
∴cos<
EF
,
BB1
>=
3
3

設直線EF與平面ABCD所成角大小為θ.
∴sinθ=
3
3
,從而tanθ=
2
2
.…(6分)
(2)∵
A1C
=(2,-2,-2),∴cos<
CA1
,
EF
>=
1
3

∴異面直線A1C與EF所成角的余弦值為
1
3
.…(12分)
點評:本題考查空間角,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點.證明:向量
A1B
、
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案