19.已知直三棱柱ABC-A1B1C1的各棱長均為a,點P是側(cè)棱AA1的中點,BC1∩B1C=S
(1)作出平面PBC1與平面ABC的公共直線;(不寫做法,保留作圖痕跡),并證明:PS∥面ABC;
(2)求四棱錐P-BB1C1C的體積.

分析 (1)BD為兩面的交線.證明PS∥BD再根據(jù)直線和平面平行的判定定理證得PS∥面ABC;
(2)由題意證明PS⊥面BB1C1C,再根據(jù)四棱錐P-BB1C1C的體積公式,運算求得結(jié)果.

解答 (1)做法如圖:BD為兩面的交線.
證明:因為P是AA1的中點,PA∥CC1
所以P是CD中點,
又S是中點,所以PS∥BD,
因為BD?面ABC,PS?面ABC,
所以PS∥面ABD,即PS∥面ABC.
(2)因為在△BCD中AC=AD=AB,
因此以CD為直徑的圓過點B,
所以BD⊥BC,
又因為直棱柱中因此BD⊥BB1,且BC∩BB1=B
所以BD⊥面BB1C1C,PS⊥面BB1C1C,
所以${V_{P-B{B_1}{C_1}C}}=\frac{1}{3}{S_{B{B_1}{C_1}C}}PS=\frac{1}{3}{a^2}.\frac{{\sqrt{3}}}{2}a=\frac{{\sqrt{3}}}{6}{a^3}$.

點評 本題主要考查直線和平面平行的判定定理的應(yīng)用,求四棱錐的體積,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知某個長方形的面積為a2-(b+1)2,且它的邊長都是整式,則它的周長為( 。
A.2aB.2a2-2b2-4bC.4a或2a2-2b2-4bD.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前項和為Sn.若a1=1,an=3Sn-1+4(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N+,記數(shù)列{cn}的前項和為Tn.求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)f(x)=$\frac{1}{{{3^x}+\sqrt{3}}}$,求:f(0)+f(1);f(-1)+f(2);f(-2)+f(3),由此可以猜想出的一般性結(jié)論是若${x_1}+{x_2}=1,則f({x_1})+f({x_2})=\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若等比數(shù)列{an}的各項均為正數(shù),且a8a13+a9a12=26,則log2a1+log2a2+…+log2a20=( 。
A.120B.100C.50D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+t}\\{y=1+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點為極點,以x軸為正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲線C1與曲線C2的直角坐標方程;
(2)設(shè)點M($\sqrt{3}$,1),曲線C1與曲線C2交于A,B兩點,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.用火柴棒擺“三角形”,如圖所示:按照規(guī)律,第5個“三角形”中需要火柴棒的根數(shù)是( 。
A.18B.19C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的坐標方程為ρ=2cosθ,直線l經(jīng)過點M(5,$\sqrt{3}$),且傾斜角為$\frac{π}{6}$.
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在三棱臺DEF-ABC中,已知底面ABC是以AB為斜邊的直角三角形,F(xiàn)C⊥底面ABC,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:平面ABED∥平面GHF;
(2))若BC=CF=$\frac{1}{2}$AB=1,求二面角A-DE-F的余弦值.

查看答案和解析>>

同步練習冊答案