14.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a8a13+a9a12=26,則log2a1+log2a2+…+log2a20=( 。
A.120B.100C.50D.60

分析 由等比數(shù)列性質(zhì)得a1a20=$\frac{1}{2}$(a8a13+a9a12)=25,由對數(shù)運(yùn)算法則得log2a1+log2a2+…+log2a20=$lo{g}_{2}({a}_{1}{a}_{20})^{10}$,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a8a13+a9a12=26,
∴a1a20=$\frac{1}{2}$(a8a13+a9a12)=25
∴l(xiāng)og2a1+log2a2+…+log2a20
=log2(a1×a2×…×a20
=$lo{g}_{2}({a}_{1}{a}_{20})^{10}$
=10$lo{g}_{2}{2}^{5}$
=50.
故選:C.

點(diǎn)評 本題考查對數(shù)式求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列、對數(shù)性質(zhì)及運(yùn)用法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列{an}和{bn}滿足:an+1=$\frac{{a}_{n}+_{n}}{\sqrt{{a}_{n}^{2}+_{n}^{2}}}$,bn+1=1+$\frac{_{n}}{{a}_{n}}$,n∈N*,
(1)求證:數(shù)列{($\frac{_{n}}{{a}_{n}}$)2}是等差數(shù)列;
(2)若a1=b1=1令($\frac{_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,若Sn=C1C2+C2C3+…+CnCn+1,求Sn;
(3)在(2)的條件下,設(shè)dn=$\frac{3-{S}_{n-1}}{1-\sqrt{11}(1-{S}_{n-1})}$,若dn≤2m-1,對于任意的n∈N+恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可歸納出:若函數(shù)f(x)是定義在R上的偶函數(shù),則f′(x)( 。
A.為偶函數(shù)B.為奇函數(shù)
C.既為奇函數(shù)又為偶函數(shù)D.為非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).1可以分拆為若干個(gè)不同的單位分?jǐn)?shù)之和:
1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
…,
依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中,m、n∈N*,則mn=( 。
A.228B.240C.260D.273

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年618期間,某購物平臺的銷售業(yè)績高達(dá)516億人民幣.與此同時(shí),相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(Ⅱ)若將頻率視為概率,某人在該購物平臺上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量X:
①求對商品和服務(wù)全好評的次數(shù)X的分布列;
②求X的數(shù)學(xué)期望和方差.
附臨界值表:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測值:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表:
對服務(wù)好評對服務(wù)不滿意合計(jì)
對商品好評a=80b=40120
對商品不滿意c=70d=1080
合計(jì)15050n=200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直三棱柱ABC-A1B1C1的各棱長均為a,點(diǎn)P是側(cè)棱AA1的中點(diǎn),BC1∩B1C=S
(1)作出平面PBC1與平面ABC的公共直線;(不寫做法,保留作圖痕跡),并證明:PS∥面ABC;
(2)求四棱錐P-BB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在直角坐標(biāo)系中,已知曲線C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),若以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=2cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,點(diǎn)C是圓O直徑BE的延長線上一點(diǎn),AC是圓O的切線,A為切點(diǎn),∠ACB的平分線CD分別與AB、AE交于D、F.
(1)求證:AD=AF;
(2)若AB=AC,求$\frac{S{\;}_{△ACE}}{{S}_{△BCA}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e為自然對數(shù)的底數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)證明:當(dāng)a∈(2,+∞)時(shí),f′(x-1)>g(x)+a.

查看答案和解析>>

同步練習(xí)冊答案