【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為件時(shí),銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量的函數(shù)為,求;
(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得利潤最大?
【答案】(1);(2)當(dāng)該公司的年產(chǎn)量為475件時(shí),當(dāng)年獲得的利潤最大.
【解析】試題分析:(1)根據(jù)銷售這種產(chǎn)品所得的年利潤=銷售所得的收入-銷售成本,建立函數(shù)關(guān)系即可;
(2)利用配方法,求得0<x≤500時(shí), ,在x=450時(shí)取得最大值,x>500時(shí), ,即當(dāng)該公司的年產(chǎn)量為475件時(shí),獲得的利潤最大.
試題解析:
(1)當(dāng)時(shí), ,
當(dāng)時(shí), ,
故
(2)當(dāng)時(shí), ,
故當(dāng)時(shí),
當(dāng)時(shí), .
故當(dāng)該公司的年產(chǎn)量為475件時(shí),當(dāng)年獲得的利潤最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的以往各年的宣傳費(fèi)用支出(萬元)與銷售量(萬件)之間有如下對應(yīng)數(shù)據(jù)
2 | 4 | 5 | 6 | 8 | |
4 | 3 | 6 | 7 | 8 |
(1)試求回歸直線方程;
(2)設(shè)該產(chǎn)品的單件售價(jià)與單件生產(chǎn)成本的差為(元),若與銷售量(萬件)的函數(shù)關(guān)系是,試估計(jì)宣傳費(fèi)用支出為多少萬元時(shí),銷售該產(chǎn)品的利潤最大?(注:銷售利潤=銷售額-生產(chǎn)成本-宣傳費(fèi)用)
(參考數(shù)據(jù)與公式: , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)平面直角坐標(biāo)系中,傾斜角為的直線過點(diǎn),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標(biāo)方程;
(2)若直線與交于、兩點(diǎn),且,求傾斜角的值.
(Ⅱ)已知函數(shù).
(1)若函數(shù)的最小值為5,求實(shí)數(shù)的值;
(2)求使得不等式成立的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值x,得到如下的頻率分布表:
x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
頻數(shù) | 2 | 12 | 34 | 38 | 10 | 4 |
(Ⅰ)作出樣本的頻率分布直方圖,并估計(jì)該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);
(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ) 求曲線與交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)分別在曲線, 上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):R(x)= ,其中x是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤x表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意實(shí)數(shù)x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com