分析 利用換元法設(shè)f(x)=ax+3,g(x)=x2-b,根據(jù)一元一次函數(shù)和一元二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷求解即可.
解答 解:∵(ax+3)(x2-b)≤0對(duì)任意x∈[0,+∞)恒成立,
∴當(dāng)x=0時(shí),不等式等價(jià)為-3b≤0,即b≥0,
當(dāng)x→+∞時(shí),x2-b>0,此時(shí)ax+3<0,則a<0,
設(shè)f(x)=ax+3,g(x)=x2-b,
若b=0,則g(x)=x2>0,
函數(shù)f(x)=ax+3的零點(diǎn)為x=-$\frac{3}{a}$,則函數(shù)f(x)在(0,-$\frac{3}{a}$)上f(x)>0,此時(shí)不滿足條件;
若a=0,則f(x)=3>0,而此時(shí)x→+∞時(shí),g(x)>0不滿足條件,故b>0;
∵函數(shù)f(x)在(0,-$\frac{3}{a}$)上f(x)>0,則(-$\frac{3}{a}$,+∞))上f(x)<0,
而g(x)在(0,+∞)上的零點(diǎn)為x=$\sqrt$,且g(x)在(0,$\sqrt$)上g(x)<0,
則($\sqrt$,+∞)上g(x)>0,
∴要使(ax+3)(x2-b)≤0對(duì)任意x∈[0,+∞)恒成立,
則函數(shù)f(x)與g(x)的零點(diǎn)相同,即-$\frac{3}{a}$=$\sqrt$,
∴a2b=9.
故答案為:9.
點(diǎn)評(píng) 本題考查了不等式恒成立以及分類討論思想、轉(zhuǎn)化與化歸思想及運(yùn)算求解能力,解題時(shí)應(yīng)根據(jù)一元一次函數(shù)和一元二次函數(shù)的圖象和性質(zhì),得到兩個(gè)函數(shù)的零點(diǎn)相同,是較難的題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<1 | B. | a≤1 | C. | a≥0 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 42 | B. | 30 | C. | 20 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{17}$ | B. | $\frac{4}{17}$ | C. | -$\frac{4}{17}$i | D. | -$\frac{4}{17}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com