12.學(xué)校組織學(xué)生參加某項(xiàng)比賽,參賽選手必須有很好的語言表達(dá)能力和文字組織能力.學(xué)校對(duì)10位已入圍的學(xué)生進(jìn)行語言表達(dá)能力和文字組織能力的測(cè)試,測(cè)試成績(jī)分為A,B,C三個(gè)等級(jí),其統(tǒng)計(jì)結(jié)果如表:

語言表達(dá)能力
文字組織能力
ABC
A220
B1a1
C01b
由于部分?jǐn)?shù)據(jù)丟失,只知道從這10位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到語言表達(dá)能力或文字組織能力為C的學(xué)生的概率為$\frac{3}{10}$.
( I)求a,b的值;
( II)從測(cè)試成績(jī)均為A或 B的學(xué)生中任意抽取2位,求其中至少有一位語言表達(dá)能力或文字組織能力為A的學(xué)生的概率.

分析 (I)依題意可知:語言表達(dá)能力或文字組織能力為C的學(xué)生共有(b+2)人,由此利用等可能事件概率計(jì)算公式列出方程能求出b,進(jìn)而能求出a.
(II)測(cè)試成績(jī)均為A或 B的學(xué)生共有7人,其中語言表達(dá)能力和文字組織能力均為B的有2人,設(shè)為b1,b2,其余5人設(shè)為a1,a2,a3,a4,a5.利用列舉法能求出至少有一位語言表達(dá)能力或文字組織能力為A的學(xué)生的概率.

解答 (本小題滿分13分)
解:(I)依題意可知:語言表達(dá)能力或文字組織能力為C的學(xué)生共有(b+2)人.
∵從這10位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,
抽到語言表達(dá)能力或文字組織能力為C的學(xué)生的概率為$\frac{3}{10}$.
∴$\frac{b+2}{10}=\frac{3}{10}$.
解得b=1,
a=10-2-2-1-1-1-1=2.…(5分)
(II)測(cè)試成績(jī)均為A或 B的學(xué)生共有7人,
其中語言表達(dá)能力和文字組織能力均為B的有2人,設(shè)為b1,b2,
其余5人設(shè)為a1,a2,a3,a4,a5
則基本事件空間Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),
(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),
(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)}.
所以基本事件空間總數(shù)n=21.
選出的2人語言表達(dá)能力和文字組織能力均為B的有{(b1,b2)}.
所以至少有一位語言表達(dá)能力或文字組織能力為A的學(xué)生的概率為$P=1-\frac{1}{21}=\frac{20}{21}$.…(13分)

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查概率的求法,考查等可能事件概率計(jì)算公式、對(duì)立事件概率計(jì)算公式、列舉法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC 中,角A,B,C的對(duì)邊分別是a,b,c,若 a2-b2=c2-bc,則角A的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a,b,c分別為△ABC的內(nèi)角A,B,C的對(duì)邊,若關(guān)于x的不等式x2-ax+1≤0有且只有一個(gè)解,且$(a+b)(sinA-sinB)=(sinC-\sqrt{3}sinB)c$,則△ABC面積的最大值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-1,0),$\overrightarrow{c}$=($\sqrt{3}$,k),若2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$垂直,則k=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{x^2},x>0\end{array}\right.$,若函數(shù)g(x)=f(x)-k(x-1)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-1)∪(4,+∞)B.(-∞,-1]∪[4,+∞)C.[-1,0)∪(4,+∞)D.[-1,0)∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分圖象如圖所示,則$y=f(x+\frac{π}{6})$取得最小值時(shí)x的集合為( 。
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α則n∥αB.m∥α,α⊥β,則m⊥β
C.m⊥β,α⊥β,則m∥α或m?αD.m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)φ(x)=sinx-kx(k∈R).
(I)若函數(shù)φ(x)在x=0處的切線與y軸垂直,求實(shí)數(shù)k的值;
(Ⅱ)若函數(shù)φ(x)在R內(nèi)單調(diào),求實(shí)數(shù)k的取值范圍;
(Ⅲ)當(dāng)k=$\frac{1}{2}$時(shí),求函數(shù)y=φ(2x)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知AB是半圓O的直徑,AB=4,C、D是半圓上的兩個(gè)三等分點(diǎn).
(1)求$\overrightarrow{AO}•\overrightarrow{OD}$和|$\overrightarrow{AO}+\overrightarrow{OC}$|;
(2)在半圓內(nèi)任取一點(diǎn)P,求△ABP的面積大于2$\sqrt{3}$的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案