7.下列說法正確的個數(shù)有( 。
①“全等三角形的面積相等”的否命題是真命題;
②若p∨q為真命題,則p,q均為真命題;
③設復數(shù)z=a+bi(i為虛數(shù)單位),則“ab≠0”是“z為虛數(shù)”的充要條件;
④在刻畫回歸模型的擬合效果時,殘差平方和越小,相關指數(shù)R2的值越大,說明擬合的效果越好.
A.1B.2C.3D.4

分析 ①根據(jù)逆否命題的等價性進行判斷,
②根據(jù)復合命題的真假性進行判斷,
③根據(jù)復數(shù)的有關概念以及充分條件和必要條件的定義進行判斷,
④根據(jù)回歸分析中相關指數(shù)R2的進行判斷.

解答 解:①“全等三角形的面積相等”的逆命題為面積相等的三角形是全等三角形,為假命題,則命題的否命題是假命題;故①錯誤,
②若p∨q為真命題,則p,q至少有一個為真命題;故②錯誤
③設復數(shù)z=a+bi(i為虛數(shù)單位),當“ab≠0”時,z為虛數(shù)成立,當z=bi時滿足z是虛數(shù),但ab=0,即必要性不成立,故③錯誤,
④在刻畫回歸模型的擬合效果時,殘差平方和越小,相關指數(shù)R2的值越大,說明擬合的效果越好.正確,故④正確,
故選:A

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,但難度不大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知拋物線y2=2x的弦AB的中點坐標為(1,$\frac{\sqrt{2}}{2}$),則|AB|=( 。
A.3B.$\sqrt{2}+1$C.$\sqrt{3}+1$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知三棱柱柱ABC-A1B1C1,如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,且AB=2AC,E為BB1的中點,F(xiàn)為CB1的中點.
(1)證明:平面AEF⊥平面CAA1C1;
(2)求二面角E一AF-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.計算$\frac{1+2i}{i}$=2-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}滿足an+2an+1=7×3n-1,且a1=1,則a3=9,通項an=3n-1(用n表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.將參加夏令營的400名學生編號為:1,2,…,400.采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為5.這400名學生分住在A、B、C三樓,從1到200在A樓,從201到300在B樓,從301到400在C樓,三個樓被抽中的人數(shù)依次為(  )
A.26,12,12B.25,13,12C.25,12,13D.24,13,13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.sin(-510°)=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知△ABC的三內角A,B,C依次構成等差數(shù)列,則cosA+cosC的取值范圍為($\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在四面體A-BCD中,AB=AD=CD=2,CB=4,面ABD⊥面CBD,CD⊥BD,則四面體A-BCD的體積為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案