12.正四棱錐S-ABCD的底面邊長為2,高為1,E是邊BC的中點(diǎn),動(dòng)點(diǎn)P在四棱錐表面上運(yùn)動(dòng),并且總保持PE⊥AC,則動(dòng)點(diǎn)P的軌跡的周長為$\sqrt{2}$+$\sqrt{3}$.

分析 由題意知:點(diǎn)P的軌跡為如圖所示的三角形EFG,其中G、F為中點(diǎn),可得EF=$\frac{1}{2}$BD,GE=GF=$\frac{1}{2}$SB,即可得出.

解答 解:由題意知:點(diǎn)P的軌跡為如圖所示的三角形EFG,其中G、F為中點(diǎn),BD=2$\sqrt{2}$,SB=$\sqrt{{1}^{2}+(\sqrt{2})^{2}}$=$\sqrt{3}$.
∴EF=$\frac{1}{2}$BD=$\sqrt{2}$,
GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{3}}{2}$,
∴軌跡的周長為 $\sqrt{2}$+$\sqrt{3}$.
故答案為:$\sqrt{2}$+$\sqrt{3}$.

點(diǎn)評 本題考查了正四棱錐的性質(zhì)、三角形中位線定理、勾股定理、正方形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)xOy中,動(dòng)點(diǎn)P(x,y)到定直線l:x=-2的距離比到定點(diǎn)F(1,0)的距離大1,D(a,0)是x軸上一動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡方程G;
(2)當(dāng)a=-1時(shí),過D作直線,交動(dòng)點(diǎn)P的軌跡于M(x1,y1)、N(x2,y2)兩點(diǎn),證明:y1y2為定值;
(3)設(shè)A(4,y1)是軌跡方程G在x軸上方的點(diǎn),過A作AB垂直于y軸,垂足為B,C為OB的中點(diǎn),以C為圓心,CO為半徑作圓C1,討論直線AD與圓C1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=ex-e-x,且函數(shù)f(x)的兩個(gè)極值點(diǎn)為α,β(α<β).設(shè)λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{{x}_{2}+x}_{3}}{2}$,則( 。
A.g(α)<g(λ)<g(β)<g(μ)B.g(λ)<g(α)<g(β)<g(μ)C.g(λ)<g(α)<g(μ)<g(β)D.g(α)<g(λ)<g(μ)<g(β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:(x+2)2+(y-4)2=2,P是其上任一點(diǎn),求P到直線l:x+y+2=0的最短距離和最長距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知圓C1:(x-4)2+(y-5)2=4和圓C2:(x+3)2+(y-1)2=4
(1)若直線l1過點(diǎn)A(2,0),且與圓C1相切,求直線l1的方程;
(2)若直線l2過點(diǎn)B(4,0),且被圓C2截得的弦長為2$\sqrt{3}$,求直線l2的方程;
(3)直線l3的方程是x=$\frac{5}{2}$,證明:直線l3上存在點(diǎn)P,滿足過P的無窮多對互相垂直的l4和l5,它們分別與圓C1和圓C2相交,且直線l4被圓C1截得的弦長與直線l5被圓C2截得的弦長相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以正四面體各面中心為頂點(diǎn)的新四面體的棱長是原四面體棱長的(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.橢圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的右焦點(diǎn)F,過焦點(diǎn)F的直線l0⊥x軸,P(x0,y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線$\frac{{x}_{0}x}{3}$+$\frac{{y}_{0}y}{2}$=1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證:$\frac{|FM|}{|FN|}$為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解方程:2(x4+1)-3x(x2-1)-4x2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正三棱錐S-ABC底面邊長為2$\sqrt{3}$,過側(cè)棱SA與底面中心O作截面SAD,在△SAD中,若SA=AD,求側(cè)面與底面所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案