分析 推導出AD⊥BC,SD⊥BC,從而∠SDO是側面與底面所成二面角,由此能求出側面與底面所成二面角的余弦值.
解答 解:∵正三棱錐S-ABC底面邊長為2$\sqrt{3}$,
過側棱SA與底面中心O作截面SAD,在△SAD中,SA=AD,
∴SO⊥底面ABC,D是BC中點,
∴AD⊥BC,SD⊥BC,∴∠SDO是側面與底面所成二面角,
∵SA=AD=$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,OD=$\frac{1}{3}AD=1$,
SD=$\sqrt{S{B}^{2}-B{D}^{2}}$=$\sqrt{9-3}$=$\sqrt{6}$,
∴cos∠SDO=$\frac{OD}{SD}$=$\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
∴側面與底面所成二面角的余弦值為$\frac{\sqrt{6}}{6}$.
點評 本題考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 與m有關 | B. | 與a有關 | C. | 與k有關 | D. | 等于-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 49,9 | B. | 7,3 | C. | $\sqrt{7}$,$\sqrt{3}$ | D. | 7,$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com