7.若集合A={x|3x-x2>0},集合B={x|x<1},則A∩(∁UB)等于(  )
A.(-3,1]B.(-∞,1]C.[1,3)D.(3,+∞)

分析 求出A中不等式的解集確定出A,根據(jù)全集U=R求出B的補集,找出A與B補集的交集即可.

解答 解:由A中不等式變形得:x(x-3)<0,
解得:0<x<3,即A=(0,3),
∵B=(-∞,1),
∴∁UB=[1,+∞),
則A∩(∁UB)=[1,3),
故選:C.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{1}{3}{x^3}-{x^2}$-3x+9的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)是奇函數(shù),且滿足f(x+2)=f(x),當0≤x≤1時,f(x)=2x(1-x),則f(-$\frac{9}{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$2{log_5}10+{log_5}\frac{1}{4}+{2^{{{log}_4}3}}$=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=loga(2-ax)(a>0,a≠1).
(1)當a=3時,求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)-loga(2+ax),判斷g(x)的奇偶性;
(3)是否存在實數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓C方程x2+y2-2x-4y+a=0,圓C與直線x+2y-4=0相交于A,B兩點,且OA⊥OB(O為坐標原點),則實數(shù)a的值為( 。
A.$-\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{8}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{1}{2}$,且與y軸的正半軸的交點為$(0,2\sqrt{3})$,拋物線C2的頂點在原點且焦點為橢圓C1的左焦點.
(1)求橢圓C1與拋物線C2的標準方程;
(2)過(1,0)的兩條相互垂直直線與拋物線C2有四個交點,求這四個點圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)Sn為等差數(shù)列{an}的前n項和,若a3=4,S9-S6=27,則S10=65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在正方體ABCD-A1B1C1D1各條棱所在的直線中,與直線AA1垂直的條數(shù)共有8條.

查看答案和解析>>

同步練習(xí)冊答案