4.已知集合A={x|y=$\sqrt{x-{x}^{2}}$},B={y|y=ln(1-x)},則A∪B=R.

分析 先求出集合A、B,再求A∪B.

解答 解:集合A={x|y=$\sqrt{x-{x}^{2}}$}={x|x-x2≥0}={x|0≤x≤1}=[0,1];
B={y|y=ln(1-x)}={y|y∈R}=R,
則A∪B=R.
故答案為:R.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)a∈R,則“a>1”是“a2>|a-2|”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=2x2+4x+1(x≤-2)的反函數(shù)是y=-1-$\sqrt{\frac{x+1}{2}}$,(x≥1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{|{x}^{2}+4x+3|,x≤0}\end{array}\right.$若關(guān)于x的方程f2(x)+bf(x)+4=0有8個不同的實數(shù)根,則實數(shù)b的取值范圍是( 。
A.[-$\frac{17}{4}$,-4)∪{-5}B.[-$\frac{13}{3}$,-4)∪{-5}C.[-5,-$\frac{13}{3}$]D.[-5,-4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)點P是曲線y=ex-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點,P點處的切線的傾斜角為α,則角α的取值范圍是( 。
A.[$\frac{2}{3}π,π$)B.[0,$\frac{π}{2}$)∪($\frac{2}{3}π,π$)C.[0,$\frac{π}{2}$)∪[$\frac{5π}{6}$,π)D.[$\frac{π}{2}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,cos2A-3cos(B+C)=1,△ABC的面積為$5\sqrt{3},b=5$,則sinBsinC=$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=2cosωxsin($ωx+\frac{π}{6}$)-$\frac{1}{2}$(ω>0)的周期為π.
(1)求ω的值及f(x)的單調(diào)增區(qū)間;
(2)記g(x)=f(x)+sin(x-$\frac{π}{6}$),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域為R,則實數(shù)a的取值范圍是( 。
A.(-∞,-1]∪[2,+∞)B.[-1,2]C.(-∞,-2]∪[1,+∞)D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)a>0,b>0,則( 。
A.若a-lnb>b-lna,則a<bB.若a-lnb>b-lna,則a>b
C.若a+lnb>b+lna,則a<bD.若a+lnb>b+lna,則a>b

查看答案和解析>>

同步練習冊答案